临近空间风温遥感干涉仪设计及正演
Instrument design and forward modeling of near-space wind and temperature sensing interferometer
查看参考文献28篇
文摘
|
临近空间(20~100 km)风温探测对于大气物理和空间科学的发展具有重要的学术意义和应用价值。以1.27μm附近的O2(a1Δg)气辉为辐射源,采用广角迈克尔逊干涉仪进行临边观测,能够实现平流层、中间层及低热层区域(40~ 80 km)大气风场和温度场的同时探测。本文设计了临近空间风温遥感干涉仪,并对该仪器进行了仪器建模及正演仿真。根据气辉临边辐射光谱特性及谱线选取的原则,提出了采用两组强度不同的谱线进行风温遥感,弱线用于低空探测,以避免自吸收效应对测量结果的影响;强线用于高空探测,以期实现高的测量精度。建立了由大气辐射传输模块,迈克尔逊干涉仪模块,滤波器模块,以及光学系统、传感器阵列、红外焦平面等设备的系统参数组成的正演模型。通过正演模型获得了临边观测图像,并对风速及温度的测量不确定度进行了计算。数值模拟结果表明,在40~80 km的高度内,风测量精度为1~3 m/s,温度测量精度为1~3K,满足临近空间风温探测精度的要求。 |
其他语种文摘
|
Wind and temperature measurements in near-space(20-100 km)play aprominent part in the development of atmospheric physics and space science,which are of considerable academic and application value.The atmospheric wind and temperature fields in the stratosphere,mesosphere,and lower thermosphere(40-80 km)can be simultaneously detected using the wide-angle Michelson interferometer with the radiation source observation of the limb-viewing O_2(a_1Δ_g)airglow near 1.27μm.Hence, a near-space wind and temperature sensing interferometer was designed in this study,and its modeling and forward simulation were conducted.Based on the characteristics of the radiation spectrum and principle of spectral line selection,two sets of different intensity lines were employed for wind and temperature detection.The weak group was used for low altitude measurement to avoid the influence of self absorption on the measurement results;the strong line was used for high altitude detection to achieve high measurement accuracy.The forward model was composed of the system parameters of atmosphere radiation transmission module,Michelson interferometer module,filter module,optical system, sensor array,and infrared focal plane.Through forward modeling,the limb-viewing image was obtained,and the uncertainty of wind velocity and temperature measurement was analyzed.The numerical simulation results show that the wind measurement accuracy is 1-3 m/s and temperature measurement accuracy is 1-3Kin the height range of 40-80 km,which meet the requirements of wind temperature detection accuracy in adjacent space. |
来源
|
光学精密工程
,2020,28(8):1678-1689 【核心库】
|
DOI
|
10.3788/ope.20202808.1678
|
关键词
|
卫星遥感
;
临近空间
;
风温探测
;
Michelson干涉仪
|
地址
|
1.
武汉科技大学城市学院, 湖北, 武汉, 430083
2.
中国科学院武汉物理与数学研究所, 湖北, 武汉, 430071
3.
中国科学院西安光学精密机械研究所, 陕西, 西安, 710119
4.
中国科学院国家空间科学中心, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-924X |
学科
|
大气科学(气象学) |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6786483
|
参考文献 共
28
共2页
|
1.
荆楠. 光度数据反演临近空间低速点目标形状尺寸信息.
光学精密工程,2017,25(7):1738-1747
|
CSCD被引
4
次
|
|
|
|
2.
陆其峰. FY-3D星红外高光谱大气探测仪的在轨光谱精度评估.
光学精密工程,2019,27(10):2105-2115
|
CSCD被引
7
次
|
|
|
|
3.
李娜. 临近空间大气扰动风场的探测与分析.
装备环境工程,2017,14(7):35-40
|
CSCD被引
1
次
|
|
|
|
4.
向磊. 双向大气湍流光信道瞬时衰落相关特性测量.
中国光学,2019,12(5):1100-1108
|
CSCD被引
2
次
|
|
|
|
5.
张轶尧. 基于中国岢岚地区法布里-珀罗干涉仪的风场及行星波观测特征.
空间科学学报,2018,38(4):482-491
|
CSCD被引
1
次
|
|
|
|
6.
Stober G. Retrieving horizontally resolved wind fields using multi-static meteor radar observations.
Atmospheric Measurement Techniques,2018,11(8):4891-4907
|
CSCD被引
3
次
|
|
|
|
7.
刘盼. 气体受激拉曼散射系统的分析与优化.
光学精密工程,2019,27(12):2509-2516
|
CSCD被引
3
次
|
|
|
|
8.
陈星. 测风激光雷达修正F因子的小尺度风切变检测算法.
光学精密工程,2018,26(4):927-935
|
CSCD被引
6
次
|
|
|
|
9.
漆成莉. 风云三号红外高光谱探测仪的光谱定标.
光学精密工程,2019,27(4):747-755
|
CSCD被引
13
次
|
|
|
|
10.
冯玉涛. 大气风场探测星载干涉光谱技术进展综述.
上海航天,2017,34(3):14-26
|
CSCD被引
11
次
|
|
|
|
11.
Shepherd G G. The Wind Imaging Interferometer(WINDII) on the Upper Atmosphere Research Satellite:a 20year perspective.
Reviews of Geophysics,2012,50(2):RG2007
|
CSCD被引
8
次
|
|
|
|
12.
Hays P B. The high-resolution Doppler imager on the Upper Atmosphere Research Satellite.
Journal of Geophysical Research Atmospheres,1993,98:10713-10723
|
CSCD被引
32
次
|
|
|
|
13.
Ortland D. Remote sensing of mesospheric temperature and O_2(1Σ)band volume emission rates with the high-resolution Doppler imager.
Journal of Geophysical Research Atmospheres,1998,103:1821-1835
|
CSCD被引
5
次
|
|
|
|
14.
Shepherd G G. The stratospheric wind interferometer for transport studies(swift).
Advances in Space Research,2001,27(6/7):1071-1079
|
CSCD被引
7
次
|
|
|
|
15.
Solheim B. SWIFT-DASH:spatial heterodyne spectroscopy approach to stratospheric wind and ozone measurement.
Atmosphere-Ocean,2015,53(1):50-57
|
CSCD被引
9
次
|
|
|
|
16.
Gordley L L. Doppler wind and temperature sounder:new approach using gas filter radiometry.
Journal of Applied Remote Sensing,2011,5(1):053570
|
CSCD被引
4
次
|
|
|
|
17.
武魁军. 分子滤光红外成像技术及其在光电探测中的应用(特邀).
红外与激光工程,2019,48(4):402003
|
CSCD被引
1
次
|
|
|
|
18.
Turner D S. On the feasibility of a fast forward model for Doppler interferometry in the infrared.
Quarterly Journal of the Royal Meteorological Society,2012,138(663):483-499
|
CSCD被引
1
次
|
|
|
|
19.
Rahnama P. Scientific assessment of the SWIFT instrument design.
Journal of Atmospheric and Oceanic Technology,2013,30(9):2081-2094
|
CSCD被引
4
次
|
|
|
|
20.
Ward W E. Waves Michelson Interferometer:a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents.
International Symposium on Remote Sensing.Proc SPIE4540, Sensors,Systems,and Next-Generation Satellites V. 4540,2001:100-111
|
CSCD被引
1
次
|
|
|
|
|