一种第三代单晶高温合金中高温横向持久性能
Transverse stress rupture properties of a third generation single crystal superalloy at medium and elevated temperatures
查看参考文献22篇
文摘
|
研究一种镍基第三代单晶(single crystal,SC)高温合金在760℃/800MPa,980℃/250MPa与1100℃/137MPa条件下的横向持久性能。结果表明:在760℃/800MPa,980℃/250MPa与1100℃/137MPa条件下,该合金横向持久寿命与伸长率均低于纵向;横向与纵向持久断裂后的位错组态特征一致,760℃/800MPa条件下断裂后γ'相中存在相交的层错,而1100℃/137MPa条件下断裂后γ/γ'相界面形成位错缠结与高密度位错网;横向与纵向在760℃/800MPa条件下为类解理断裂与韧窝断裂的混合断裂,而在980℃/250MPa与1100℃/137MPa条件下为韧窝断裂;第一代单晶高温合金DD3、第二代单晶高温合金DD6与本研究的第三代单晶高温合金中高温横向持久断裂机制基本一致;外应力方向垂直于定向凝固过程形成的一次枝晶间界面,是横向持久性能低于纵向的主要原因。 |
其他语种文摘
|
At the conditions of 760℃/800MPa,980℃/250MPa and 1100℃/137MPa,the transverse stress rupture properties of a nickel-based third generation single crystal superalloy were investigated.The results show that the stress rupture life and elongation of the transverse specimens are lower than those of the longitudinal specimens at 760℃/800MPa,980℃/250MPa and 1100℃/137MPa.The dislocation configurations of the stress ruptured transverse and longitudinal specimens are the same.There are intersecting stacking faults in theγ'phases after stress ruptured at 760℃/800MPa,and the dislocations are tangled and high densities of dislocation networks have formed at theγ/γ'interface after stress ruptured at 1100 ℃/137 MPa.The transverse and longitudinal specimens show quasi-cleavage and dimple mixture mode at 760℃/800MPa,while they both show dimple mode at 980 ℃/250 MPa and 1100 ℃/137 MPa.The fracture mechanisms of transverse specimens of the first generation single crystal superalloy DD3,the second generation single crystal superalloy DD6 and the third generation single crystal superalloy in our study at medium and elevated temperatures are basically the same.The main reason for the transverse specimens have a lower stress rupture properties than the longitudinal specimens is that the external applied stress is perpendicular to the primary interdendritic interface formed during the directional solidification process. |
来源
|
材料工程
,2020,48(7):139-145 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2018.000332
|
关键词
|
第三代单晶高温合金
;
横向持久性能
;
断裂机制
;
位错组态
|
地址
|
中国航发北京航空材料研究院, 先进高温结构材料国防科技重点实验室, 北京, 100095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家重大科技专项
|
文献收藏号
|
CSCD:6760250
|
参考文献 共
22
共2页
|
1.
Gell M. The development of single crystal superalloy turbine blades.
Superalloys,1980:205-214
|
CSCD被引
15
次
|
|
|
|
2.
Li J R. Development of a low-cost third generation single crystal superalloy DD9.
Superalloys,2016:57-63
|
CSCD被引
1
次
|
|
|
|
3.
Liu L. Microstructure and stress rupture properties of single crystal superalloy CMSX-2under high thermal gradient directional solidification.
Materials Letters,2007,61(1):227-230
|
CSCD被引
43
次
|
|
|
|
4.
Yu J. Effect of heat treatment on microstructure and stress rupture life of DD32 single crystal Ni-base superalloy.
Materials Science and Engineering:A,2007,460/461:420-427
|
CSCD被引
31
次
|
|
|
|
5.
喻健. 近[001]取向DD6单晶高温合金980℃/250MPa持久性能各向异性研究.
材料工程,2012(4):1-5
|
CSCD被引
5
次
|
|
|
|
6.
Shah D M. Evaluation of PWA1483for large single crystal IGT blade applications.
Superalloys,2000:295-304
|
CSCD被引
5
次
|
|
|
|
7.
陈德厚. DD3单晶高温合金的中温横向持久性能.
航空材料学报,1985(3):1-5
|
CSCD被引
1
次
|
|
|
|
8.
赵金乾. 单晶高温合金DD6的中温横向持久性能.
材料工程,2009(3):1-5
|
CSCD被引
2
次
|
|
|
|
9.
Shi Z X. Effects of Dendritic Orientation on Stress Rupture Properties of DD6 Single Crystal Superalloy.
Journal of Iron and Steel Research,International,2011,18(10):66-71
|
CSCD被引
5
次
|
|
|
|
10.
Shi Z X. Stress rupture properties and fracture behavior of DD6single crystal superalloy.
Materials Science Forum,2016,849:468-474
|
CSCD被引
2
次
|
|
|
|
11.
刘昌奎. 单晶高温合金断裂特征.
失效分析与预防,2010,5(4):225-230
|
CSCD被引
11
次
|
|
|
|
12.
Maclachlan D W. Modelling and prediction of the stress rupture behaviour of single crystal superalloys.
Materials Science and Engineering:A,2001,302(2):275-285
|
CSCD被引
12
次
|
|
|
|
13.
Hopgood A A. The creep behaviour of a nickel-based single-crystal superalloy.
Materials Science and Engineering,1986,82(1/2):27-36
|
CSCD被引
24
次
|
|
|
|
14.
Leverant G R. The effect of stress and temperature on the extent of primary creep in directionally solidified nickel-base superalloys.
Metallurgical Transactions,1971,2(3):907-908
|
CSCD被引
2
次
|
|
|
|
15.
Han G M. Anisotropic stress rupture properties of the nickel-base single crystal superalloy SRR99.
Materials Science and Engineering:A,2010,527(21):5383-5390
|
CSCD被引
19
次
|
|
|
|
16.
Rae C M F. Primary creep in single crystal superalloys: origins,mechanisms and effects.
Acta Materialia,2007,55(3):1067-1081
|
CSCD被引
44
次
|
|
|
|
17.
Shi Z X. Creep properties and microstructure evolution of nickel-based single crystal superalloy at different conditions.
Transactions of Nonferrous Metals Society of China,2014,24(8):2536-2543
|
CSCD被引
6
次
|
|
|
|
18.
Sass V. Orientation dependence of dislocation structures and deformation mechanisms in creep deformed CMSX-4single crystals.
Materials Science and Engineering: A,1998,245(1):19-28
|
CSCD被引
28
次
|
|
|
|
19.
刘丽荣. 一种镍基单晶高温合金蠕变机制的研究.
金属学报,2005,41(11):1215-1220
|
CSCD被引
9
次
|
|
|
|
20.
Yan G W P. Orientation dependence of transverse tensile properties of nickel-based third generation single crystal superalloy DD9from 760to 1100℃.
Transactions of Nonferrous Metals Society of China,2019,29(3):558-568
|
CSCD被引
1
次
|
|
|
|
|