气体与液体两相连续旋转爆轰波二维数值模拟研究
Two-dimensional Numerical Research on Two-phase Rotating Detonation Waves
查看参考文献26篇
文摘
|
为研究汽油与富氧空气两相连续旋转爆轰发动机的工作特性,使用非结构化三角形网格守恒元与求解元(CE/SE)方法对气体与液体(简称气液)两相连续旋转爆轰波进行了二维数值模拟。通过数值模拟获得连续旋转爆轰波传播的不同模态,研究了进气总压和当量比对两相连续旋转爆轰波的影响,分析了不同模态下连续旋转爆轰发动机的工作特性,并对数值模拟结果进行了试验验证。结果表明:液滴的蒸发和剥离过程,延缓了液滴燃料的燃烧,导致了两相爆轰压力和温度的不完全耦合,降低了两相爆轰波的传播速度;当量比对连续旋转爆轰波的传播模态影响较大,当量比越低、越容易形成单波模态,当量比越高、越容易产生多个波头;单波模态的爆轰波压力和传播速度波动最小,双波模态居中,三波模态波动最大;发动机推力波动规律与压力波动规律相反,单波模态推力波动最大,双波次之,三波模态推力波动最小;计算所得旋转爆轰波波速与试验结果吻合较好,旋转爆轰波流场与实验研究定性一致。数值研究方法发展了非结构化CE/SE算法,研究结果对气液两相连续旋转爆轰发动机的试验研究和工程应用具有一定的指导意义。 |
其他语种文摘
|
In order to investigate the gasoline/oxygen-enriched air continuously rotating detonation engines(RDE),the conservation elements and solution elements method (CE/SE method) based on the unstructured triangular meshes is used for the simplified 2D simulation of two-phase continuously RDE.The different propagation modes of rotating detonation waves (RDW) were obtained.The influences of total inlet pressure and equivalent ratio were studied and the operating performance of RDE was analyzed.The results show that the evaporation and stripping of droplets delay the combustion of fuel,which leads to the incomplete coupling of detonation peak pressure and peak temperature.The equivalent ratio has a great influence on the propagation mode of rotating detonation waves.A single-wave RDW is easily generated under low equivalent ratio,and a multiple RDW is generated under higher equivalent ratio.The detonation wave pressure and velocity fluctuations of single-wave mode are the smallest,those of double-wave mode are moderate and those of three-wave mode are the largest,but the thrust fluctuation law of propagation mode is opposite to that of pressure fluctuation.The thrust fluctuation of single-wave mode is the largest,followed by double-wave mode,and the thrust fluctuation of three-wave mode is the smallest.The calculated velocity and flow field of the rotating detonation agree well with the experimental results.The numerical research is meaningful for the development of unstructured-mesh CE/SE method.The calculated results have a guidance effect on the experimental research and engineering application of two-phase RDE. |
来源
|
兵工学报
,2020,41(4):681-691 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2020.04.007
|
关键词
|
气体与液体两相旋转爆轰
;
守恒元与求解元方法
;
非结构化网格
;
数值模拟
|
地址
|
南京理工大学, 瞬态物理国家重点实验室, 江苏, 南京, 210094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
力学 |
基金
|
国家自然科学基金项目
;
中央高校基本科研业务费专项资金
;
江苏省研究生科研与实践创新计划项目
|
文献收藏号
|
CSCD:6723042
|
参考文献 共
26
共2页
|
1.
Ma F. Propulsive performance of airbreathing pulse detonation engines.
Journal of Propulsion & Power,2006,22(6):1188-1203
|
CSCD被引
20
次
|
|
|
|
2.
Bykovskii F A. Continuous spin detonations.
Journal of Propulsion and Power,2006,22(6):1204-1216
|
CSCD被引
105
次
|
|
|
|
3.
Bykovskii F A. Continuous spin detonation of a hydrogen-air mixture with addition of air into the products and the mixing region.
Combustion, Explosion, and Shock Waves,2010,46(1):52-59
|
CSCD被引
6
次
|
|
|
|
4.
魏万里. 氧化剂喷注面积对连续旋转爆轰波传播特性影响的实验研究.
兵工学报,2018,39(12):2345-2353
|
CSCD被引
8
次
|
|
|
|
5.
Zheng Q. Experimental research on the propagation process of continuous rotating detonation wave.
Defence Technology,2013,9(4):201-207
|
CSCD被引
16
次
|
|
|
|
6.
郑权. 当量比对液体燃料旋转爆轰发动机爆轰影响实验研究.
推进技术,2015,36(6):947-952
|
CSCD被引
31
次
|
|
|
|
7.
Liu Y. Numerical study on the instabilities in H_2-air rotating detonation engines.
Physics of Fluids,2018,30(4):046106
|
CSCD被引
3
次
|
|
|
|
8.
Fujii J. Numerical investigation on detonation velocity in rotating detonation engine chamber.
Proceedings of the Combustion Institute,2017,36(2):2665-2672
|
CSCD被引
8
次
|
|
|
|
9.
Sun J. Effects of air injection throat width on a non-premixed rotating detonation engine.
Acta Astronaut,2019,159:189-198
|
CSCD被引
5
次
|
|
|
|
10.
李宝星. 液态燃料对连续旋转爆轰发动机爆轰特性的影响.
爆炸与冲击,2018,38(2):331-338
|
CSCD被引
6
次
|
|
|
|
11.
李宝星. 气体与液体两相连续旋转爆轰发动机爆轰波传播特性三维数值模拟研究.
兵工学报,2017,38(7):1358-1367
|
CSCD被引
13
次
|
|
|
|
12.
Chang S C. The method of space-time conservation element and solution element-a new approach for solving the Navier-Stokes and Euler equations.
Journal of Computational Physics,1995,119(2):295-324
|
CSCD被引
102
次
|
|
|
|
13.
Shen H. Robust high-order space-time conservative schemes for solving conservation laws on hybrid meshes.
Journal of Computational Physics,2015,281:375-402
|
CSCD被引
3
次
|
|
|
|
14.
Shen H. Positivity-preserving CE/SE schemes for solving the compressible Euler and Navier-Stokes equations on hybrid unstructured meshes.
Computer Physics Communications,2018,232:165-176
|
CSCD被引
1
次
|
|
|
|
15.
Nisar U A. A splitting scheme based on the space-time CE/SE method for solving multi-dimensional hydrodynamical models of semiconductor devices.
Computer Physics Communications,2016,205:69-86
|
CSCD被引
1
次
|
|
|
|
16.
Liu S J. Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure.
Chinese Physics Letters,2011,28(9):094704
|
CSCD被引
17
次
|
|
|
|
17.
Zhou R. Progress of continuously rotating detonation engines.
Chinese Journal of Aeronautics,2016,29(1):15-29
|
CSCD被引
28
次
|
|
|
|
18.
Zhou R. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines.
Combustion & Flame,2012,159(12):3632-3645
|
CSCD被引
30
次
|
|
|
|
19.
Schwer D A. On reducing feedback pressure in rotating detonation engines.
Proceedings of the 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition,2013:2013-1178
|
CSCD被引
1
次
|
|
|
|
20.
Frolov S M. Three-dimensional numerical simulation of the operation of the rotating-detonation chamber.
Russian Journal of Physical Chemistry B,2012,6(2):276-288
|
CSCD被引
2
次
|
|
|
|
|