Tailoring electronic properties of two-dimensional antimonene with isoelectronic counterparts
查看参考文献55篇
文摘
|
Using ab initio density functional theory calculations, we explore the three most stable structural phases, namely, a, b, and cubic (c) phases, of two-dimensional (2D) antimonene, as well as its isoelectronic counterparts SnTe and InI. We find that the band gap increases monotonically from Sb to SnTe to InI along with an increase in ionicity, independent of the structural phases. The band gaps of this material family cover the entire visible-light energy spectrum, ranging from 0.26 eV to 3.37 eV, rendering them promising candidates for optoelectronic applications. Meanwhile, band-edge positions of these materials are explored and all three types of band alignments can be achieved through properly combining antimonene with its isoelectronic counterparts to form heterostructures. The richness in electronic properties for this isoelectronic material family sheds light on possibilities to tailor the fundamental band gap of antimonene via lateral alloying or forming vertical heterostructures. |
来源
|
Chinese Physics. B
,2020,29(3):037305 【核心库】
|
DOI
|
10.1088/1674-1056/ab6c4e
|
关键词
|
tailoring electronic properties
;
two-dimensional antimonene
;
isoelectronic counterparts
|
地址
|
1.
College of Sciences, Liaoning Shihua University, Fushun, 113001
2.
Institute of Metal Research, Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Shenyang, 110016
3.
Institute of Opto-Electronics, Shanxi University, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Taiyuan, 030006
4.
Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, 030006
5.
Materials Department, University of California, USA, Santa Barbara, CA 93106
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1674-1056 |
学科
|
物理学;化学 |
基金
|
国家自然科学基金
;
the College Students' Innovation and Entrepreneurship Projects, China
;
Liaoning Province Doctor Startup Fund, China
|
文献收藏号
|
CSCD:6721102
|
参考文献 共
55
共3页
|
1.
Novoselov K S.
Science,2004,306:666
|
CSCD被引
4144
次
|
|
|
|
2.
Radisavljevic B.
Nature Nanotech,2011,6:147
|
CSCD被引
782
次
|
|
|
|
3.
Guo H H.
Phys. Rev. B,2015,91:205415
|
CSCD被引
3
次
|
|
|
|
4.
Tao P.
J. Appl. Phys,2014,115:054305
|
CSCD被引
7
次
|
|
|
|
5.
Guo H H.
J. Appl. Phys,2013,113:013709
|
CSCD被引
4
次
|
|
|
|
6.
Guo H H. Theoretical study of thermoelectric properties of MoS_2.
Chin. Phys. B,2014,23:017201
|
CSCD被引
15
次
|
|
|
|
7.
Huang S X.
ACS Nano,2016,10:8964
|
CSCD被引
19
次
|
|
|
|
8.
Wang Z.
Nat. Nanotechnol,2018,13:554
|
CSCD被引
55
次
|
|
|
|
9.
Wang H.
Nature Commun,2019,10:2302
|
CSCD被引
5
次
|
|
|
|
10.
Liu H.
ACS Nano,2014,8:4033
|
CSCD被引
311
次
|
|
|
|
11.
Li L.
Nat. Nanotech,2014,9:372
|
CSCD被引
542
次
|
|
|
|
12.
Ling X.
Proc. Natl Acad. Sci. USA,2015,112:4523
|
CSCD被引
67
次
|
|
|
|
13.
Yang T.
Phys. Rev. B,2015,92:125412
|
CSCD被引
3
次
|
|
|
|
14.
Kuntz K L.
ACS Appl. Mater. & Inter,2017,9:9126
|
CSCD被引
5
次
|
|
|
|
15.
Sharma S.
Phys. Rev. Appl,2017,8:4
|
CSCD被引
1
次
|
|
|
|
16.
Zhu Z.
Nano Lett,2015,15:6042
|
CSCD被引
6
次
|
|
|
|
17.
Zhu Z.
ACS Nano,2015,9:8284
|
CSCD被引
10
次
|
|
|
|
18.
Zhu Z. Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning.
Chin. Phys. B,2020,29:046101
|
CSCD被引
3
次
|
|
|
|
19.
Dong B J.
Phys. Rev. Materials,2019,3:013405
|
CSCD被引
1
次
|
|
|
|
20.
Novoselov K S.
Science,2016,353:aac9439
|
CSCD被引
324
次
|
|
|
|
|