帮助 关于我们

返回检索结果

Improving EGT sensing data anomaly detection of aircraft auxiliary power unit

查看参考文献35篇

Liu Liansheng 1   Peng Yu 1   Wang Lulu 2,3   Dong Yu 2,3   Liu Datong 1 *   Guo Qing 1  
文摘 The reliability of the on-wing aircraft Auxiliary Power Unit(APU) decides the cost and the comfort of flight to a large degree. The most important function of APU is to help start main engines by providing compressed air. Especially on the condition of sudden shutdown in the air,APU can offer additional thrust for landing. Therefore, its condition monitoring has drawn much attention from the academic and industrial field. Among the on-wing sensing data which can reflect its condition, Exhaust Gas Temperature(EGT) is one of the most important parameters. To ensure the reliability of EGT, one kind of data-driven anomaly detection framework for EGT sensing data is proposed based on the Gaussian Process Regression and Kernel Principal Component Analysis. The situations of one-dimensional and two-dimensional input data for EGT anomaly detection are considered, respectively. The cross-validation experiments are carried out by utilizing the real condition data of APU, which are provided by China Southern Airlines Company Limited Shenyang Maintenance Base. The anomalous stuck condition of EGT sensing data is also detected. Experimental results show that the proposed EGT sensing data anomaly detection method can achieve better performance of false positive ratio, false negative ratio and accuracy.
来源 Chinese Journal of Aeronautics ,2020,33(2):448-455 【核心库】
DOI 10.1016/j.cja.2019.10.001
关键词 Anomaly detection ; Auxiliary power unit ; Condition-based maintenance ; Data-driven framework ; Exhaust gas temperature
地址

1. School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, 150080  

2. China Southern Airlines Company Limited Shenyang Maintenance Base, Shenyang, 110169  

3. China Southern Airlines Engineering Technology Research Center, Shenyang, 110169

语种 英文
文献类型 研究性论文
ISSN 1000-9361
学科 航空
基金 国家自然科学基金 ;  中国博士后科学基金
文献收藏号 CSCD:6670709

参考文献 共 35 共2页

1.  Wang P. Gas turbine APU reliability modeling and failure forecasting. Proceedings of annual reliability and maintainability symposium,2015:26-29 CSCD被引 1    
2.  Lou Q. Aircraft APU starter health monitoring and failure prognostics [Dissertation],2013 CSCD被引 1    
3.  Jardine A K S. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Pr,2006,20(7):1483-1510 CSCD被引 152    
4.  Gorinevsky D. Model-based diagnostics for an aircraft auxiliary power unit,2002 CSCD被引 1    
5.  Song L. Step-by-step fuzzy diagnosis method for equipment based on symptom extraction and trivalent logic fuzzy diagnosis theory. IEEE Trans Fuzzy Syst,2018,26(6):3467-3478 CSCD被引 6    
6.  Song L. Vibration-based intelligent fault diagnosis for roller bearings in low-speed rotating machinery. IEEE Trans Instrum Meas,2018,67(8):1887-1899 CSCD被引 16    
7.  Yan W. A battery management system with a Lebesgue sampling-based extended Kalman filter. IEEE Trans Ind Electron,2019,66(4):3227-3236 CSCD被引 12    
8.  Liu D. Hybrid state of charge estimation for lithium-ion battery under dynamic operating conditions. Int J Electr Power,2019,110:48-61 CSCD被引 3    
9.  Liu D. On-line life cycle health assessment for lithium-ion battery in electric vehicles. J Clean Prod,2018,199:1050-1065 CSCD被引 9    
10.  Song Y. Satellite lithium-ion battery remaining useful life estimation with an iterative updated RVM fused with the KF algorithm. Chin J Aeronaut,2018,31(1):31-40 CSCD被引 17    
11.  Sun F. A Bayesian least-squares support vector machine method for predicting the remaining useful life of a microwave component. Adv Mech Eng,2017,9(1):1-9 CSCD被引 9    
12.  Guo K. UAV Sensor Fault detection using a classifier without negative samples: a local density regulated optimization algorithm. Sensors,2019,19(4):771 CSCD被引 5    
13.  Zhang Y. An electro-mechanical actuator motor voltage estimation method with a feature-aided Kalman filter. Sensors,2018,18(12):4190 CSCD被引 6    
14.  Sun F. Remaining useful life prediction for a machine with multiple dependent features based on Bayesian dynamic linear model and copulas. IEEE Access,2017,5:16277-16287 CSCD被引 5    
15.  Liu L. Effective sensor selection and data anomaly detection for condition monitoring of aircraft engines. Sensors,2016,16(5):623 CSCD被引 3    
16.  Liu L. FESeR: a data-driven framework to enhance sensor reliability for the system condition monitoring. Microelectron Reliab,2016,64:681-687 CSCD被引 1    
17.  Liu L. Detection and identification of sensor anomaly for aerospace applications. Proceedings of annual reliability and maintainability symposium; 2016 Jan 25-28,2016 CSCD被引 1    
18.  Liu L. SDR: Sensor data recovery for system condition monitoring 14-17; Houston. TXProceedings of IEEE international instrumentation and measurement technology conference. USA,2018:2018 CSCD被引 1    
19.  Liu L. Data-driven remaining useful life prediction considering sensor anomaly detection and data recovery. IEEE Access,2019,7:58336-58345 CSCD被引 4    
20.  Liu L. DRES: Data recovery for condition monitoring to enhance system reliability. Microelectron Reliab,2016,64:125-129 CSCD被引 1    
引证文献 7

1 刘连胜 面向飞机辅助动力装置在翼剩余寿命预测的性能参数扩增方法 仪器仪表学报,2020,41(7):107-116
CSCD被引 6

2 Zhou Xingjie Regression model for civil aero-engine gas path parameter deviation based on deep domainadaptation with Res-BP neural network Chinese Journal of Aeronautics,2021,34(1):79-90
CSCD被引 10

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号