基于全保偏光纤结构的主振荡脉冲非线性放大系统
Master oscillator pulse nonlinear amplifier system based on all polarization-maintaining fiber
查看参考文献22篇
文摘
|
提出了基于全保偏光纤结构的主振荡脉冲非线性放大系统,该系统由基于半导体可饱和吸收镜锁模的直线型光纤振荡器、二级放大结构脉冲非线性光纤放大器和具有负色散的单模传导光纤的脉冲压缩器构成.通过此系统获得了中心波长为1560 nm,重复频率为200 MHz的超短激光脉冲,脉冲半高全宽为44 fs,单脉冲能量可达1 nJ.随后,使用厚度为1 mm的掺杂氧化镁的周期性极化铌酸锂晶体进行倍频工作.实验中使用各类波片、准直及聚焦透镜将放大系统输出的脉冲激光聚焦在极化周期为19.8 μm的晶体位置上.通过合理调整光路并优化准直聚焦参数获得了平均功率为60 mW,中心波长为779 nm的倍频脉冲激光输出,转换效率达到30%.实验结果表明,基于全保偏光纤结构的主振荡脉冲非线性放大系统可以产生数十飞秒量级特性良好的脉冲激光. |
其他语种文摘
|
The erbium-doped fiber oscillators,especially mode-locked fiber oscillators for generating femtosecond pulses,cannot meet the requirements for most of modern industrial applications because they are resticted by the low power and the limited wavelength range.In order to solve this problem,lots of efforts have been made both theoretically and experimentally,to improve the chirped pulse amplification (CPA) technology.The emergence of CPA technology greatly enhances the energy of laser pulses.The broadening and compressing of the laser pulses are both always dependent on the improving of spatial optical components,such as grating pairs.However,the use of this kind of method can increase the complexity of the amplification system to a certain extent.This may be an essential reason why more and more researchers pay attention to all fiber amplification system.In this paper,the master oscillator pulse nonlinear amplifier system based on all polarization-maintaining fiber is proposed,which is mainly composed of an oscillator based on the semiconductor saturable absorption mirror and linear cavity,a two-stage amplification and a pulse compressor constructed by a single-mode conductive fiber with anomalous dispersion.Using this system,we obtain ultrashort laser pulses in the 1.5 nm band whose pulse width equals 44 fs and single pulse energy reaches about 1 nJ.The system is not only compact and miniaturized but also stable and reliable due to the all polarization-maintaining fiber.Subsequently,an MgO doped periodically poled lithium niobite crystal with a thickness of 1 mm is used to implement frequency doubling.The pulses from the system are accurately focused on a position where the crystal polarization period is 19.8 μm with help of some wave plates and lenses.Adjusting the optical path reasonably and optimizing colliminated focusing parameters,the double-frequency pulse output with certral wavelength of 779 nm and average power of 60 W is obtained,in which the conversion efficiency reaches 30%.The result shows that the master oscillator pulse nonlinear amplifier system based on all polarization maintaining fiber can produce satisfactory ultrashort pulses.It is a new idea for generating the ultrashort femtosecond pulses in the near-infrared band. |
来源
|
物理学报
,2019,68(23):234204 【核心库】
|
DOI
|
10.7498/aps.68.20190925
|
关键词
|
主振荡脉冲非线性放大系统
;
非线性放大技术
;
全光纤激光放大器
;
倍频
|
地址
|
1.
西安工业大学光电工程学院, 西安, 710021
2.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3290 |
学科
|
电子技术、通信技术 |
基金
|
国家重点研发计划
;
国家自然科学基金青年科学基金
;
陕西省光电测试与仪器技术重点实验室开放基金
;
瞬态光学与光子技术国家重点实验室开放基金
;
中国科学院国家外国专家局“创新团队国际合作伙伴计划”资助的课题
|
文献收藏号
|
CSCD:6636194
|
参考文献 共
22
共2页
|
1.
付思.
硕士学位论文,2013
|
CSCD被引
1
次
|
|
|
|
2.
Jazayerifar M.
J. Lightwave Technol,2013,31:1454
|
CSCD被引
1
次
|
|
|
|
3.
Sinclair L C.
Rev. Sci. Instrum,2015,86:081301
|
CSCD被引
11
次
|
|
|
|
4.
Meng F.
Chin. J. Las,2015,42:0702012
|
CSCD被引
1
次
|
|
|
|
5.
景磊. 直线腔掺铒光纤激光器有源内腔吸收型气体检测灵敏度分析.
天津大学学报,2012,45:95
|
CSCD被引
2
次
|
|
|
|
6.
Li M.
J. Opt. Soc. Korea,2010,14:14
|
CSCD被引
2
次
|
|
|
|
7.
王强.
中国激光,2018,45:106
|
CSCD被引
1
次
|
|
|
|
8.
李彦.
中国激光,2017,44:253
|
CSCD被引
1
次
|
|
|
|
9.
Kang J Q.
2018 Conference on Lasers and Electro-Optics San Jose,2018:pSW4J.5
|
CSCD被引
1
次
|
|
|
|
10.
Huang L.
J. Biomed. Opt,2018,23:1
|
CSCD被引
1
次
|
|
|
|
11.
刘观辉. 基于新型偏振稳定毫米波发生器的光载无线通信下行链路.
物理学报,2012,61:094205
|
CSCD被引
4
次
|
|
|
|
12.
刘欢. 303MHz高重复频率掺Er光纤飞秒激光器.
物理学报,2015,64:114210
|
CSCD被引
4
次
|
|
|
|
13.
Eidam T.
Opt. Lett,2010,35:94
|
CSCD被引
57
次
|
|
|
|
14.
Eidam T.
Opt. Express,2011,19:255
|
CSCD被引
38
次
|
|
|
|
15.
Sobon G.
IEEE J. Sel. Top. Quantum Electron,2014,20:492
|
CSCD被引
9
次
|
|
|
|
16.
李浪. 基于啁啾脉冲放大的掺铒全光纤结构激光器.
激光技术,2016,40:307
|
CSCD被引
2
次
|
|
|
|
17.
Ou S M. Generation of 47 fs Pulses from an Er:Fiber Amplifier.
Chin. Phys. Lett,2017,34:074207
|
CSCD被引
4
次
|
|
|
|
18.
Sun J.
Appl. Opt,2018,57:1492
|
CSCD被引
3
次
|
|
|
|
19.
延凤平. 基于偏振保持掺Er~(3+)光纤的高稳定性单波长光纤激光器.
物理学报,2009,58:6296
|
CSCD被引
1
次
|
|
|
|
20.
Lu Z G.
Laser Phys,2018,28:125103
|
CSCD被引
1
次
|
|
|
|
|