基于LIBS技术对岩石识别的数据降噪方法
Data Denoising Method for Rock Identification Based on LIBS Technology
查看参考文献20篇
文摘
|
利用激光诱导击穿光谱技术进行原岩分类与识别存在可重复性差,数据残差值高等问题,导致其分类识别准确率较低.针对此问题,提出了一种基于格拉布斯准则法的异常值判别方法,该方法可以有效替换残差值较大的数据,从而降低分类识别算法过拟合的概率.使用线性判别分析法、随机森林分类法、支持向量机三种分类识别算法对岩石的LIBS光谱进行识别.在数据降噪前,三种方法的识别准确率为:线性判别分析法79.6%、随机森林分类法75.2%、支持向量机94.5%,而数据降噪后的识别准确率为:线性判别分析法92%、随机森林分类法97%、支持向量机99.4%. |
其他语种文摘
|
There have been confront with a low identification accuracy problem due to the poor repeatability and high data residual value of laser-induced breakdown spectrum.In order to solve such problems,an distinguishing method of abnormal value based on Grubbs criterion (3δ-Grubbs)was proposed.The method can effectively replace the data of large residual values to reduce the probability of over-fitting in the classification recognition algorithm.Finally,by using three classification recognition algorithms:linear discriminant analysis,random forest classification and support vector machine,we identified the LIBS spectrum of rocks.Before the data noise reduces,the recognition accuracy of the three methods were:linear discriminant analysis 79.6%,random forest classification 75.2%,support vector machine 94.5%.After data noise is reduced,the recognition accuracy of the three methods is as follows: linear discriminant analysis 92%,random forest classification 97%,support vector machine 99.4%. |
来源
|
光子学报
,2019,48(10):1030001 【核心库】
|
DOI
|
10.3788/gzxb20194810.1030001
|
关键词
|
激光诱导击穿光谱技术
;
等离子体
;
原岩识别
;
主成分分析法
;
降噪
|
地址
|
1.
西安邮电大学电子工程学院, 西安, 710121
2.
中国科学院大学, 北京, 100049
3.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
物理学;地质学 |
基金
|
国家重点研发计划
|
文献收藏号
|
CSCD:6603905
|
参考文献 共
20
共1页
|
1.
罗文峰.
激光诱导击穿光谱技术的初步研究,2011
|
CSCD被引
3
次
|
|
|
|
2.
Fortes F J. Laser-induced breakdown spectroscopy.
Analytical Chemistry,2013,85(2):640-669
|
CSCD被引
41
次
|
|
|
|
3.
Lucia F C D. Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection.
Optics Express,2009,17(2):419-425
|
CSCD被引
8
次
|
|
|
|
4.
Tankova V. Investigation of archaeological metal artefacts by laser-induced breakdown spectroscopy(LIBS).
Journal of Physics:Conference Series,2018,992:012003
|
CSCD被引
1
次
|
|
|
|
5.
Vahid D M. Identification and sorting of PVC polymer in recycling process by laser-induced breakdown spectroscopy (LIBS)combined with support vector machine(SVM)model.
Iranian Journal of Science and Technology Transaction A-Science,2016,42(2):959-965
|
CSCD被引
3
次
|
|
|
|
6.
Lanza N L. Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars.
Applied Optics,2010,49(13):C211-C217
|
CSCD被引
21
次
|
|
|
|
7.
Ollila A M. Comparison of two partial least squares-discriminant analysis algorithms for identifying geological samples with the ChemCam laser-induced breakdown spectroscopy instrument.
Applied Optics,2012,51(7):B130-B142
|
CSCD被引
3
次
|
|
|
|
8.
Sirven J B. Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods.
Journal of Analytical Atomic Spectrometry,2007,22(12):1471-1480
|
CSCD被引
12
次
|
|
|
|
9.
Moros J. Dual-spectroscopy platform for the surveillance of mars mineralogy using a decisions fusion architecture on simultaneous LIBS-Raman data.
Analytical Chemistry,2018,90(3):2079-2087
|
CSCD被引
1
次
|
|
|
|
10.
Ebo E A. Simulated laser-induced breakdown spectra of graphite and synthetic shergottite glass under Martian conditions.
Spectrochimica Acta Part B:Atomic Spectroscopy,2018,148:31-43
|
CSCD被引
3
次
|
|
|
|
11.
Saverio S G. Identification and classification of meteorites by a handheld LIBS instrument coupled with a fuzzy logic-based method.
Journal of Analytical Atomic Spectrometry,2016,31:1-13
|
CSCD被引
1
次
|
|
|
|
12.
Harmon R S. Discriminating volcanic centers with handheld laserinduced breakdown spectroscopy(LIBS).
Journal of Archaeological Science,2018,98:112-127
|
CSCD被引
3
次
|
|
|
|
13.
Yang Hongxing. Laser-induced breakdown spectroscopy applied to the characterization of rock by support vector machine combined with principal component analysis.
Chinese Physics B,2016,25(6):065201
|
CSCD被引
14
次
|
|
|
|
14.
Li W. In situ classification of rocks using stand-off laser-induced breakdown spectroscopy with a compact spectrometer.
Journal of Analytical Atomic Spectrometry,2018,33:461-467
|
CSCD被引
6
次
|
|
|
|
15.
Yu Jianlong. Provenance classification of nephrite jades using multivariate LIBS:a comparative study.
Analytical Methods,2018,10:281-289
|
CSCD被引
5
次
|
|
|
|
16.
Yelamela M.
Support vector machine based classification of seafloor rock types measured underwater using Laser Induced Breakdown Spectroscopy,2016
|
CSCD被引
1
次
|
|
|
|
17.
Huang Suyun. Robust kernel principal component analysis.
Neural Computation,2009,21(11):3179-3213
|
CSCD被引
4
次
|
|
|
|
18.
Vitkov A. Comparative study on fast classification of brick samples by combination of principal component analysis and linear discriminant analysis using stand-off and table-top laser-induced breakdown spectroscopy.
Spectrochimica Acta Part B:Atomic Spectroscopy,2014,101:191-199
|
CSCD被引
3
次
|
|
|
|
19.
Ho T K. The random subspace method for constructing decision forests.
IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(8):832-844
|
CSCD被引
235
次
|
|
|
|
20.
Yang Guang. Rock and Soil Classification Using PLS-DA and SVM Combined with a Laser-Induced Breakdown Spectroscopy Library.
Plasma Science & Technology,2015,17(8):656-663
|
CSCD被引
11
次
|
|
|
|
|