云制造环境下基于改进NSBBO的任务调度算法
Task Scheduling Algorithm Based on Improved NSBBO in Cloud Manufacturing Environment
查看参考文献20篇
文摘
|
针对云制造环境下的多目标任务调度问题,改进非支配排序生物地理优化算法,提出一种反映用户偏好的任务调度算法(UPTSA)。通过基于权重均匀分配策略定义的用户偏好度来评估制造任务调度方案的质量,使UPTSA算法能寻找反映用户偏好的最优解,并设计梯形迁移率计算模型扩大其搜索邻域,避免陷入局部最优解。实例分析结果表明,UPTSA算法能有效求解云制造环境下的多目标任务调度问题,为用户提供一组辅助其决策的调度方案,从而满足高度个性化的用户需求。 |
其他语种文摘
|
In order to solve multi-objective task scheduling problem in cloud manufacturing environment, this paper proposes a User Preference Task Scheduling Algorithm (UPTSA) through improving Non-dominated Sorting Biogeography-based Optimization(NSBBO) algorithm. The quality of the manufacturing task scheduling scheme is evaluated by the user preference defined by the uniform weight allocation strategy,so that the UPTSA algorithm can find the optimal solution reflecting the user's preference,and the trapezoidal migration rate calculation model is designed to expand the search neighborhood and avoid falling into the local maximum. The example analysis results show that UPTSA algorithm can effectively solve the multi-objective task scheduling problem in cloud manufacturing environment, and provide users with a set of scheduling schemes to assist their decision-making, so as to meet highly personalized user requirements. |
来源
|
计算机工程
,2019,45(10):26-32 【扩展库】
|
DOI
|
10.19678/j.issn.1000-3428.0053218
|
关键词
|
云制造
;
非支配排序生物地理优化算法
;
用户偏好
;
任务调度算法
;
权重均匀分配策略
;
迁移率
|
地址
|
1.
江南大学物联网工程学院, 江苏, 无锡, 214122
2.
江南大学, 物联网技术应用教育部工程研究中心, 江苏, 无锡, 214122
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3428 |
学科
|
自动化技术、计算机技术 |
基金
|
江苏省产学研联合创新资金
;
江苏省交通运输厅项目
|
文献收藏号
|
CSCD:6591140
|
参考文献 共
20
共1页
|
1.
李伯虎. 云制造——面向服务的网络化制造新模式.
计算机集成制造系统,2010,16(1):1-7,16
|
CSCD被引
385
次
|
|
|
|
2.
刘永奎. 云制造再探讨.
中国机械工程,2018,29(18):2226-2237
|
CSCD被引
8
次
|
|
|
|
3.
周龙飞. 云制造调度问题研究综述.
计算机集成制造系统,2017,23(6):1147-1166
|
CSCD被引
12
次
|
|
|
|
4.
房欢.
云计算中的任务调度及重调度优化决策问题的研究,2012
|
CSCD被引
1
次
|
|
|
|
5.
Robabeh G. Time-cost efficient scheduling algorithms for executing workflow in infrastructure as a service clouds.
Wireless Personal Communications,2018,103(3):2035-2070
|
CSCD被引
2
次
|
|
|
|
6.
Ebadifard F. A PSO-based task scheduling algorithm improved using a load-balancing technique for the cloud computing environment.
Concurrency and Computation: Practice and Experience,2018,30(12):436-442
|
CSCD被引
3
次
|
|
|
|
7.
程功勋. 面向用户偏好的智能云服务平台研究.
中国机械工程,2012,23(11):1318-1323,1336
|
CSCD被引
3
次
|
|
|
|
8.
孙大为. 一种基于免疫克隆的偏好多维QoS云资源调度优化算法.
电子学报,2011,39(8):1824-1831
|
CSCD被引
29
次
|
|
|
|
9.
Zhou Longfei. Diverse task scheduling for individualized requirements in cloud manufacturing.
Enterprise Information Systems,2018,12(3):300-318
|
CSCD被引
6
次
|
|
|
|
10.
Zhang Shuai. A hybrid approach combining an extended BBO algorithm with an intuitionistic fuzzy entropy weight method for QoS-aware manufacturing service supply chain optimization.
Neurocomputing,2018,272:439-452
|
CSCD被引
1
次
|
|
|
|
11.
武善玉. 云制造系统中基于粒子群优化的多任务调度.
华南理工大学学报(自然科学版),2015,43(1):105-110
|
CSCD被引
2
次
|
|
|
|
12.
熊永华. 面向多目标优化的云制造虚拟资源调度方法.
计算机集成制造系统,2015,21(11):3079-3087
|
CSCD被引
7
次
|
|
|
|
13.
Sathya S A. Multi-objective task scheduling to minimize energy consumption and makespan of cloud computing using NSGA-II.
Journal of Network and Systems Management,2018,26(2):463-485
|
CSCD被引
3
次
|
|
|
|
14.
易安斌. 云制造环境下设备资源的多目标优化选择.
计算机集成制造系统,2017,23(6):1187-1195
|
CSCD被引
16
次
|
|
|
|
15.
Simon D.
Evolutionary optimization algorithms,2013
|
CSCD被引
7
次
|
|
|
|
16.
Yang Guoqing. Multiobjective biogeography-based optimization for supply chain network design under uncertainty.
Computers and Industrial Engineering,2015,85:145-156
|
CSCD被引
7
次
|
|
|
|
17.
Goudos S K. A multiobjective approach to indoor wireless heterogeneous networks planning.
Computer Networks,2015,91(C):564-576
|
CSCD被引
2
次
|
|
|
|
18.
Zheng Qinghua. Virtual machine consolidated placement based on multi-objective biogeography-based optimization.
Future Generation Computer Systems,2016,54(C):95-122
|
CSCD被引
7
次
|
|
|
|
19.
Rifai A P. Nondominated sorting biogeography-based optimization for biobjective reentrant flexible manufacturing system scheduling.
Applied Soft Computing,2018,62:187-202
|
CSCD被引
2
次
|
|
|
|
20.
Guo Weian. Numerical comparisons of migration models for multi-objective biogeography-based optimization.
Information Sciences,2016,328(C):302-320
|
CSCD被引
3
次
|
|
|
|
|