高功率半导体激光器低温特性分析
Analysis of Cryogenic Characteristics of High Power Semiconductor Lasers
查看参考文献16篇
文摘
|
研制了一套微通道封装结构半导体激光器的低温测试表征系统,实现了对高功率半导体激光器在-60℃~0℃低温范围内的输出功率、电光转换效率和光谱等关键参数稳定可靠的测试表征.采用计算流体力学及数值传热学方法,模拟了无水乙醇、三氯乙烯以及五氟丙烷三种载冷剂的散热性能.模拟结果表明,压降均为0.47bar时,采用无水乙醇作载冷剂的器件具有最低的热阻(热阻为0.73K/W)和最好的温度均匀性(中心和边缘发光单元温差为1.45℃).低温测试表征系统采用无水乙醇作为载冷剂,最大可实现0.5L/min的载冷液体流量,最多能容纳5个半导体激光器巴条同时工作.基于该低温测试表征系统,对微通道封装结构976nm半导体激光器巴条在6%占空比下的低温特性进行了研究.测试结果表明,载冷剂温度由0℃下降到-60℃,半导体激光器的输出功率由388.37 W提升到458.37W,功率提升比为18.02%;电光转换效率由60.99%提升到67.25%,效率提升幅度为6.26%;中心波长由969.68nm蓝移到954.05nm.器件开启电压增加0.04V,阈值电流降低3.93A,串联电阻增加0.18mΩ,外微分量子效率提高11.84%.分析表明,阈值电流的减小及外微分量子效率的提高,是促使半导体激光器在低温下功率、效率提升的主要因素.研究表明,采用液体微通道冷却的低温工作方式,是实现半导体激光器高输出功率、高电光转换效率的一种有效手段. |
其他语种文摘
|
A set of cryogenic measurement system for semiconductor lasers with micro-channel structure was developed.The stable measurement of some vital parameters such as output power,electro-optic conversion efficiency and spectra of high power semiconductor lasers in the range from -60℃to 0℃ were realized.Based on computational fluid dynamics and numerical heat transfer methods,the heat dissipation performance of three cryogenic coolants,anhydrous ethanol,trichloroethylene and pentafluoropropane was simulated.The simulation results show that semiconductor laser bar with anhydrous ethanol as the coolant has the smallest thermal resistance(0.73 K/W)and the best temperature uniformity(temperature difference between emitters is 1.45℃)when the pressure drop is 0.47bar.Anhydrous ethanol was used as system coolant,the maximum of ethanol flow rate was up to 0.5L/min,and 5semiconductor laser bars could work simultaneously in the system.Based on the cryogenic measurement system,the cryogenic characteristics of 976nm semiconductor laser bar with micro-channel structure at 6% duty cycle were investigated.The experimental results show that the output power of semiconductor laser bar is increased from 388.37Wto 458.37W which the power-up ratio is 18.02%,the electro-optic conversion efficiency is increased from 60.99% to 67.25%,the efficiency is increased by 6.26%,and the central wavelength is shifted from 969.68nm to 954.05nm when the coolant temperature decreases from 0℃to-60℃.The turn-on voltage increases by 0.04V, the threshold current decreases by 3.93A,the series resistance increases by 0.18mΩ,and the external differential efficiency increases by 11.84%.The analysis shows that the decrease of threshold current and the improvement of external differential efficiency are the main factors that promote the power and efficiency of semiconductor lasers at low temperature.This investigation shows that the cryogenic working mode of liquid micro-channel cooling is an effective means to achieve high output power and high electro-optic conversion efficiency of semiconductor lasers. |
来源
|
光子学报
,2019,48(9):0914002 【核心库】
|
DOI
|
10.3788/gzxb20194809.0914002
|
关键词
|
半导体激光器
;
光电测量
;
低温冷却
;
微通道
;
输出功率
;
电光转换效率
|
地址
|
1.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安, 710119
2.
中国科学院大学, 北京, 100049
3.
西安工程大学机电工程学院, 西安, 710600
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6582837
|
参考文献 共
16
共1页
|
1.
王立军. 大功率半导体激光器研究进展.
发光学报,2015,36(1):1-19
|
CSCD被引
81
次
|
|
|
|
2.
王立军. 高功率高亮度半导体激光器合束进展.
红外与激光工程,2017,46(4):0401001
|
CSCD被引
8
次
|
|
|
|
3.
李建林. 电光-MoSe2主被动双调Q 946nm全固态激光器.
光子学报,2018,47(5):0514002
|
CSCD被引
2
次
|
|
|
|
4.
刘兴胜. 大功率半导体激光器封装技术发展趋势及面临的挑战.
红外与激光工程,2009,38(增刊):490-497
|
CSCD被引
1
次
|
|
|
|
5.
王狮凌. 大功率激光器及其发展.
激光与光电子学进展,2017,54(9):45-58
|
CSCD被引
1
次
|
|
|
|
6.
王淑娜. 温度对高功率半导体激光器阵列"smile"的影响.
光子学报,2016,45(5):0514001
|
CSCD被引
6
次
|
|
|
|
7.
廖翌如. 低阈值852 nm半导体激光器的温度特性.
发光学报,2017,38(3):331-337
|
CSCD被引
2
次
|
|
|
|
8.
薛正群. 温度对InP激光器波长蓝移影响的分析.
光子学报,2018,47(1):0125002
|
CSCD被引
3
次
|
|
|
|
9.
Crump P. Diode laser efficiency increases enable>400-W peak power from 1-cm bars and show a clear path to peak powers in excess of 1-kW.
SPIE. 6104,2006:610409
|
CSCD被引
1
次
|
|
|
|
10.
Crump P. Efficient high-power laser diodes.
IEEE Journal of Selected Topics in Quantum Electronics,2013,19(4):1501211
|
CSCD被引
22
次
|
|
|
|
11.
Mercado E. Low-temperature characterization of a 1.55-μm multiplequantum-well laser down to 10K.
SPIE. 8619,2013:861913
|
CSCD被引
1
次
|
|
|
|
12.
Frevert C. Efficiency optimization of high power diode lasers at low temperatures.
IEEE CLEO,2013
|
CSCD被引
1
次
|
|
|
|
13.
Frevert C. Low-temperature optimized 940nm diode laser bars with 1.98kW peak power at 203K.
IEEE CLEO,2015
|
CSCD被引
1
次
|
|
|
|
14.
宋云菲. 808 nm半导体激光芯片电光转换效率的温度特性机理研究.
物理学报,2017,66(10):104202
|
CSCD被引
7
次
|
|
|
|
15.
Wu Dihai. Optimization of microchannel cooler of high power diode laser array package.
SPIE. 10085,2017:100850I
|
CSCD被引
1
次
|
|
|
|
16.
Zhang Pu. Deconvolution of spectral power distribution of high-power laser diode arrays.
Applied Optics,2017,56(20):5590-5598
|
CSCD被引
2
次
|
|
|
|
|