点火增长反应速率方程在LS-DYNA软件中嵌入及应用
Implantation and Application of Ignition and Growth Reaction Rate Equation in LS-DYNA Software
查看参考文献12篇
文摘
|
为了得到能够正确描述炸药的冲击起爆过程且易于标定的反应速率方程,将一种点火增长反应速率方程嵌入LS-DYNA软件,并模拟DNAN基熔注炸药的冲击起爆过程。通过对比计算压力曲线和实验压力曲线标定这种点火增长反应速率方程参数,进一步分析在LS-DYNA软件中嵌入点火增长反应速率方程的优点。结果表明:这种点火增长反应速率方程参数较少、易于标定;计算得到的4个传感器位置处冲击波到达时间与实验值相差不超过0.2μs,该反应速率方程能够正确描述炸药的冲击起爆过程;反应速率方程嵌入LS-DYNA软件所采用的算法效率高,计算中每个网格的迭代次数不超过3次。 |
其他语种文摘
|
An ignition and growth reaction rate equation with 10 parameters is implanted into LS-DYNA software to precisely describe the shock initiation of explosives and simplify the calibration of reaction rate equation. The reaction rate equation is used to simulate the shock initiation of a DNAN-based melt-cast explosive. The parameters of the reaction rate equation are calibrated by comparing the pressure-time curves in experiment and simulation, and the advantages of the reaction rate equation are analyzed. The results indicate that the reaction rate equation can be easily calibrated due to a few number of parameters. The difference between the simulated and experimental arrival times of shock wave does not exceed 0.2μs, and thus the reaction rate equation can be used to precisely describe the shock initiation of explosives. The algorithm for implanting the reaction rate equation in LS-DYNA software is efficient because the iterations for every grid does not exceed 3 times. |
来源
|
兵工学报
,2019,40(7):1411-1417 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2019.07.010
|
关键词
|
熔注炸药
;
冲击起爆
;
点火增长模型
;
反应速率方程
;
状态方程
|
地址
|
1.
北京理工大学, 爆炸科学与技术国家重点实验室, 北京, 100081
2.
安徽东风机电科技股份有限公司, 安徽, 合肥, 230000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
力学 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6553310
|
参考文献 共
12
共1页
|
1.
Lee E L. Phenomenological model of shock initiation in heterogeneous explosives.
Physics of Fluids,1980,23(12):2362-2372
|
CSCD被引
115
次
|
|
|
|
2.
Tarver C M. Modeling short pulse duration shock initiation of solid explosives.
Proceedings of the 8th Symposium (International) on Detonation,1985:951-961
|
CSCD被引
3
次
|
|
|
|
3.
Li X. A systematic method to determine and test the ignition and growth reactive flow model parameters of a newly designed polymer-bonded explosive.
Propellants, Explosives, Pyrotechnics,2018,43(9):948-954
|
CSCD被引
2
次
|
|
|
|
4.
皮铮迪. CL-20基混合炸药的冲击起爆特征.
爆炸与冲击,2017,37(6):915-923
|
CSCD被引
8
次
|
|
|
|
5.
谭凯元. Shock Initiation Characteristics of Explosives at Near-ambient Temperatures.
含能材料,2016,24(9):905-910
|
CSCD被引
6
次
|
|
|
|
6.
Hussain T. Ignition and growth modeling of shock initiation of different particle size formulations of PBXC03 explosive.
Journal of Energetic Materials,2015,34(1):38-48
|
CSCD被引
3
次
|
|
|
|
7.
Vandersall K S. Shock initiation experiments with ignition and growth modeling on low density compositionB.
the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter,2017
|
CSCD被引
1
次
|
|
|
|
8.
Li Y. Determination of Lee-Tarver model parameters of JO-11C explosive.
Propellants, Explosives, Pyrotechnics,2018,43(10):1032-1040
|
CSCD被引
2
次
|
|
|
|
9.
Murphy M. An improved reaction rate equation for simulating the ignition and growth of reaction in high explosives.
Proceedings of the 14th Symposium (International) on Detonation,2010:1491-1497
|
CSCD被引
1
次
|
|
|
|
10.
Cochran S G.
Shock initiation and detonation models in one and two dimensions: UCID-18024,1979
|
CSCD被引
1
次
|
|
|
|
11.
Cao T. Shock initiation characteristics of an aluminized DNAN/RDX melt-cast explosive.
Journal of Energetic Materials,2017,35(4):430-442
|
CSCD被引
1
次
|
|
|
|
12.
温丽晶.
PBX炸药冲击起爆细观反应速率模型研究,2011
|
CSCD被引
6
次
|
|
|
|
|