2.8 µm增益开关Er:ZBLAN光纤激光器的数值模拟
Numerical Simulation of 2.8 µm Gain-Switched Er:ZBLAN Fiber Laser
查看参考文献23篇
文摘
|
建立了适用于2.8µm增益开关掺Er~(3+)的氟化物光纤(Er:ZBLAN)激光器的计算模型,并进行了数值模拟。模拟发现存在最佳输出镜透过率使得输出功率最大,同时耦合率也影响脉宽、峰值和脉冲形态。模拟了抽运功率对脉冲形态的影响,发现弱抽运时两个抽运周期内仅出现一个信号光脉冲,而强抽运时一个抽运周期内出现多个信号光脉冲的现象。通过模拟发现了若干未被实验报道的新现象和规律,如耦合率对输出功率、能量、脉冲形态的影响规律;抽运功率阈值附近会出现与抽运周期一致的弱信号脉冲等。研究表明,在适当耦合率和抽运功率时,2.8 µm Er:ZBLAN激光器可以实现稳定增益开关脉冲输出。 |
其他语种文摘
|
This study demonstrates a simulation model of a 2.8 µm gain-switched Er: ZBLAN fiber laser by numerical simulation. The simulation results show that there exists an optimal transmittance of output mirror, resulting in an largest output power. The coupling efficiency has significant impacts on the pulse width, peak power, and pulse shape. Accordingly, the influence of the pump power on the pulse shape is calculated and discussed. A signal pulse appears during two pump periods with a weak pump, whereas several signal pulses appear during one pump period with a strong pump. To the best of our knowledge, calculation results, such as the influence of the coupling efficiency on the output power, pulse energy, and pulse shape and the weak signal consistent with pump period when the pump power is around the threshold, have not been reported in any experiment. This study shows that a stable gain-switched pulse output in a 2.8 µm Er:ZBLAN fiber laser can be achieved only with appropriate coupling efficiency and pump power. |
来源
|
光学学报
,2019,39(7):0714001 【核心库】
|
DOI
|
10.3788/AOS201939.0714001
|
关键词
|
激光器
;
中红外
;
增益开关
;
脉冲激光器
;
Er:ZBLAN
|
地址
|
1.
西北核技术研究所, 激光与物质相互作用国家重点实验室, 陕西, 西安, 710024
2.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
3.
西安交通大学电子与信息工程学院, 陕西省信息光子技术重点实验室, 陕西, 西安, 710049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-2239 |
学科
|
物理学 |
基金
|
激光与物质相互作用国家重点实验室基金
|
文献收藏号
|
CSCD:6548039
|
参考文献 共
23
共2页
|
1.
Jackson S D. Towards high-power mid-infrared emission from a fibre laser.
Nature Photonics,2012,6(7):423-431
|
CSCD被引
111
次
|
|
|
|
2.
Petersen C R. Midinfrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre.
Nature Photonics,2014,8(11):830-834
|
CSCD被引
76
次
|
|
|
|
3.
沈炎龙. 高平均功率连续锁模中红外光纤激光器.
中国激光,2018,45(6):0615001
|
CSCD被引
5
次
|
|
|
|
4.
Fortin V. Towards the development of fiber lasers for the 2 to 4 µm spectral region.
Optical Engineering,2013,52(5):054202
|
CSCD被引
1
次
|
|
|
|
5.
Fortin V. 30 W fluoride glass all-fiber laser at 2.94 µm.
Optics Letters,2015,40(12):2882-2885
|
CSCD被引
37
次
|
|
|
|
6.
Tokita S. Stable 10 W Er:ZBLAN fiber laser operating at 2.71-2.88 µm.
Optics Letters,2010,35(23):3943-3945
|
CSCD被引
17
次
|
|
|
|
7.
Liu J. Widely wavelengthtunable mid-infrared fluoride fiber lasers.
IEEE Journal of Selected Topics in Quantum Electronics,2018,24(3):0900507
|
CSCD被引
6
次
|
|
|
|
8.
Antipov S. Highpower mid-infrared femtosecond fiber laser in the water vapor transmission window.
Optica,2016,3(12):1373-1376
|
CSCD被引
21
次
|
|
|
|
9.
Duval S. Wattlevel fiber-based femtosecond laser source tunable from 2.8 to 3.6 µm.
Optics Letters,2016,41(22):5294-5297
|
CSCD被引
14
次
|
|
|
|
10.
Tang P H. Watt-level passively mode-locked Er~(3+)-doped ZBLAN fiber laser at 2.8 µm.
Optics Letters,2015,40(21):4855-4858
|
CSCD被引
19
次
|
|
|
|
11.
Zhang T. 2.78 µm passively Q-switched Er~(3+)-doped ZBLAN fiber laser based on PLD-Fe~(2+): ZnSe film.
Laser Physics Letters,2016,13(7):075102
|
CSCD被引
12
次
|
|
|
|
12.
Hu T. Actively Q-switched 2.9 µm Ho~(3+) Pr~(3+)-doped fluoride fiber laser.
Optics Letters,2012,37(11):2145-2147
|
CSCD被引
12
次
|
|
|
|
13.
Shen Y L. High peak power actively Q-switched mid-infrared fiber lasers at 3 µm.
Applied Physics B,2017,123(4):105
|
CSCD被引
4
次
|
|
|
|
14.
Wei C. Widely wavelength tunable gain-switched Er~(3+)-doped ZBLAN fiber laser around 2.8 µm.
Optics Express,2017,25(8):8816-8827
|
CSCD被引
7
次
|
|
|
|
15.
Shen Y L. Efficient wavelength-tunable gain-switching and gain-switched mode-locking operation of a heavily Er~(3+)-doped ZBLAN mid-infrared fiber laser.
IEEE Photonics Journal,2017,9(4):1504510
|
CSCD被引
2
次
|
|
|
|
16.
Li J F. Theoretical study and optimization of a high power mid-infrared erbium-doped ZBLAN fibre laser.
Chinese Physics B,2011,20(3):034205
|
CSCD被引
5
次
|
|
|
|
17.
Gorjan M. Role of interionic processes in the efficiency and operation of erbiumdoped fluoride fiber lasers.
IEEE Journal of Quantum Electronics,2011,47(2):262-273
|
CSCD被引
3
次
|
|
|
|
18.
Li J F. Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers.
IEEE Journal of Quantum Electronics,2012,48(4):454-464
|
CSCD被引
7
次
|
|
|
|
19.
Li J F. Modeling and optimization of cascaded erbium and holmium doped fluoride fiber lasers.
IEEE Journal of Selected Topics in Quantum Electronics,2014,20(5):0900414
|
CSCD被引
2
次
|
|
|
|
20.
Henderson-Sapir O. New energy-transfer upconversion process in Er~(3+): ZBLAN mid-infrared fiber lasers.
Optics Express,2016,24(7):6869-6883
|
CSCD被引
9
次
|
|
|
|
|