非标准圆筒装药爆轰驱动的试验研究
Experimental Study of the Expansion of Non-standard Metal Cylinders by Detonation
查看参考文献11篇
文摘
|
为了准确预测破片初速,研究爆轰驱动金属柱壳膨胀与断裂的过程细节和内在物理机制。设计梯恩梯炸药爆轰驱动不同壁厚的50SiMnVB钢和45号钢柱壳试验,采用高速转镜式分幅相机和光子多普勒测速仪联合同步测试和诊断,获得金属柱壳膨胀破裂过程的图像信息及膨胀速度历史,揭示了冲击波加载效应和金属柱壳破裂后继续加速过程的趋势和规律。结果表明:相同密度壳体材料随着壳体壁厚的增加,其外表面膨胀速度的振荡幅值增大、脉动次数增多,破裂模式由纯剪切转变为拉剪混合;由于壳体壁厚以及由此产生的不同载荷系数,45号钢壳体破裂时刻都晚于50SiMnVB钢壳体,且随着壁厚的增大,破裂时刻和膨胀破裂半径相差越大,但由于壳体破裂后爆轰产物的继续加速作用,相同壁厚的两种钢壳体膨胀最终状态基本接近。 |
其他语种文摘
|
The expansion fracture process and intrinsic physical mechanism of metal cylinder driven by detonation are researched for calculating the initial velocity of fragments.In the experiments,50SiMnVB steel and 45 steel cylindrical shells with different thickness were driven by TNT explosive detonation.The image information of expansion and the history of velocity were obtained by using a high-speed framing camera and the arrayed photonic Doppler velocimetry.Experiments reveal that the oscillation of expansion velocity is due to shock wave loading,and the expansion velocities of metal cylindrical shells continue to increase after shell rupture.The experimental results show that,for the shells with the same density,the oscillation amplitudes and pulsation times of expansion velocities of the shells increase with the increase in thickness,and the rupture mode changes from pure shear to tension-shear mixing.Because of the different load coefficients caused by different thicknesses of shells,the rupture time of 45 steel shell is later than that of 50SiMnVB steel shell,and with the increase in shell thickness,the difference between rupture time and rupture radius is larger.However,due to the acceleration of detonation products after rupture,the final expansion states of the two steel shells with the same wall thickness are almost the same. |
来源
|
兵工学报
,2019,40(5):897-903 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2019.05.001
|
关键词
|
非标准圆筒装药
;
爆轰驱动
;
膨胀速度
;
冲击波加载
;
壳体破裂
|
地址
|
1.
沈阳理工大学装备工程学院, 辽宁, 沈阳, 110159
2.
北京理工大学, 爆炸科学与技术国家重点实验室, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
力学 |
基金
|
国家863计划
|
文献收藏号
|
CSCD:6512985
|
参考文献 共
11
共1页
|
1.
任国武. 高应变率加载下金属柱壳断裂的实验研究.
兵工学报,2016,37(1):77-82
|
CSCD被引
12
次
|
|
|
|
2.
Wang X Y. Experimental study on the expansion of metal cylinders by detonation.
International Journal of Impact Engineering,2018,114:147-152
|
CSCD被引
9
次
|
|
|
|
3.
Li W. Effect of eccentric edge initiation on the fragment velocity distribution of a cylindrical casing filled with charge.
International Journal of Impact Engineering,2015,80:107-115
|
CSCD被引
17
次
|
|
|
|
4.
Wang L. The projection angles of fragments from a cylindrical casing filled with charge initiated at one end.
International Journal of Impact Engineering,2017,103:138-148
|
CSCD被引
4
次
|
|
|
|
5.
Ren G W. Dynamic shear fracture of an explosively-driven metal cylindrical shell.
International Journal of Impact Engineering,2016,95:35-39
|
CSCD被引
9
次
|
|
|
|
6.
Gurney G W.
The initial velocities of fragments from bombs,shells and grenades: BRL 405,1943
|
CSCD被引
1
次
|
|
|
|
7.
Lee E L.
Adiabatic expansion of high explosive detonation products: UCRL-50422,1968
|
CSCD被引
12
次
|
|
|
|
8.
Reaugh J E. A constant-density Gurney approach to the cylinder test.
Propellants, Explosives, Pyrotechnics,2004,29(2):124-128
|
CSCD被引
6
次
|
|
|
|
9.
Lindsay C M. Increasing the utility of the copper cylinder expansion test.
Propellants, Explosives, Pyrotechnics,2010,35(5):433-439
|
CSCD被引
17
次
|
|
|
|
10.
Elek P. Modeling of expansion dynamics of explosively driven metal cylinders.
Proceedings of the 27th International Symposium on Ballistics,2013:783-794
|
CSCD被引
1
次
|
|
|
|
11.
李建中. 多点光子多普勒测速仪及其在爆轰物理领域的应用.
红外与激光工程,2016,45(4):216-221
|
CSCD被引
1
次
|
|
|
|
|