类质同象置换对磁铁矿表面反应性的制约机制
Constraint Mechanism of Isomorphous Substitution on the Surface Reactivity of Magnetite
查看参考文献68篇
文摘
|
铁(氢)氧化物矿物对环境物质的地球化学行为有着重要的制约作用。相比于其他铁氧化物,磁铁矿具有一些独特的结构特征与表面性质,而赋予其良好的氧化还原活性。天然磁铁矿结构中广泛存在类质同象置换,探讨类质同象置换对磁铁矿表面反应的制约机制,有助于深刻理解磁铁矿族矿物在环境自净化过程中的作用机制。本文介绍了典型置换离子在磁铁矿结构中的赋存状态,及其对磁铁矿物化性质影响,重点阐述类质同象置换对磁铁矿表面反应性(如吸附、氧化、还原等性能)的制约机制,最后针对已有的相关研究现状以及面临的挑战,为未来的研究方向提出了一些设想和建议。 |
其他语种文摘
|
Iron oxide and/or hydroxide minerals have played important constraints on the geochemical behaviors of environmental substances. Compared to other iron oxides, magnetite has some unique structural characteristics and surface properties, endowing magnetite with good oxidation and reduction activity. The isomorphous substitution occurred widely in the structure of natural magnetite. To discuss the constraint mechanism of isomorphous substitution on the surface reactivity of magnetite will be helpful to deeply understand the mechanism of magnetite-group minerals in the environmental self-purification process. This paper has firstly introduced the coordinated state of typical substituting cations and their influences on the physicochemical properties of magnetite, then especially elucidated the constraint mechanism of the isomorphous substitution on the surface reactivity of magnetite (e.g., adsorption, oxidation, and reduction), and finally proposed some tentative plans and suggestions for future research directions in view of the current research status and facing challenges in this field. |
来源
|
矿物岩石地球化学通报
,2019,38(1):1-10 【核心库】
|
DOI
|
10.19658/j.issn.1007-2802.2019.38.030
|
关键词
|
磁铁矿
;
类质同象置换
;
吸附
;
氧化还原
;
构效关系
|
地址
|
1.
中国科学院广州地球化学研究所, 中国科学院矿物学与成矿学重点实验室;;广东省矿物物理与材料研究开发重点实验室, 广州, 510640
2.
江南大学环境与土木工程学院, 江苏, 无锡, 214122
3.
广东工业大学轻工化工学院, 广州, 510006
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
国家自然科学基金项目
;
中国科学院青年创新促进会项目
;
广东省“特支计划”百千万人才工程青年拔尖人才项目
;
广州市“珠江科技新星”项目
|
文献收藏号
|
CSCD:6434101
|
参考文献 共
68
共4页
|
1.
Asta M P. Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): The role of iron precipitates.
Chemical Geology,2010,271(1/2):1-12
|
CSCD被引
7
次
|
|
|
|
2.
Barros W R P. Catalytic activity of Fe_(3-x) Cu_x O_4(0≤x≤0. 25) nanoparticles for the degradation of Amaranth food dye by heterogeneous electro-Fenton process.
Applied Catalysis B: Environmental,2016,180:434-441
|
CSCD被引
3
次
|
|
|
|
3.
Cornell R M.
The iron oxides: structure, properties,reactions, occurrence and uses,2003
|
CSCD被引
1
次
|
|
|
|
4.
Costa R C C. Remarkable effect of Co and Mn on the activity of Fe_3-x M_x O_4 promoted oxidation of organic contaminants in aqueous medium with H_2 O_2.
Catalysis Communications,2003,4(10):525-529
|
CSCD被引
17
次
|
|
|
|
5.
Costa R C C. Novel active heterogeneous Fenton system based on Fe_(3-x) M_x O_4(Fe, Co, Mn, Ni): The role of M~(2+) species on the reactivity towards H_2 O_2 reactions.
Journal of Hazardous Materials,2006,129(1/3):171-178
|
CSCD被引
38
次
|
|
|
|
6.
Ding Y B. Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe_2 O_4 as a heterogeneous catalyst of peroxymonosulfate.
Applied Catalysis B: Environmental,2013,129:153-162
|
CSCD被引
49
次
|
|
|
|
7.
Dupuis C. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types.
Mineralium Deposita,2011,46(4):319-335
|
CSCD被引
119
次
|
|
|
|
8.
Elzinga E J. Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation.
Journal of Colloid and Interface Science,2007,308(1):53-70
|
CSCD被引
19
次
|
|
|
|
9.
Flynn E D. Influence of oxalate on Ni fate during Fe (II)-catalyzed recrystallization of hematite and goethite.
Environmental Science & Technology,2018,52(12):6920-6927
|
CSCD被引
2
次
|
|
|
|
10.
Fredrickson J K. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium.
Geochimica et Cosmochimica Acta,1998,62(19/20):3239-3257
|
CSCD被引
40
次
|
|
|
|
11.
Gorski C A. Redox behavior of magnetite: implications for contaminant reduction.
Environmental Science & Technology,2010,44(1):55-60
|
CSCD被引
4
次
|
|
|
|
12.
Gorski C A. Influence of magnetite stoichiometry on FeⅡuptake and nitrobenzene reduction.
Environmental Science & Technology,2009,43(10):3675-3680
|
CSCD被引
7
次
|
|
|
|
13.
Hamdeh H H. A Mossbauer evaluation of cation distribution in titanomagnetites.
Journal of Magnetism and Magnetic Materials,1999,191(1/2):72-78
|
CSCD被引
2
次
|
|
|
|
14.
He H P. Natural Magnetite: an efficient catalyst for the degradation of organic contaminant.
Scientific Reports,2015,5:10139
|
CSCD被引
6
次
|
|
|
|
15.
He Y T. Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: The role of passivation.
Environmental Science & Technology,2005,39(12):4499-4504
|
CSCD被引
7
次
|
|
|
|
16.
Huang X P. Facet-dependent Cr(VI) adsorption of hematite nanocrystals.
Environmental Science & Technology,2016,50(4):1964-1972
|
CSCD被引
21
次
|
|
|
|
17.
Jeon B H. Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides.
Environmental Science & Technology,2003,37(15):3309-3315
|
CSCD被引
19
次
|
|
|
|
18.
Kong S H. Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide.
Chemosphere,1998,37(8):1473-1482
|
CSCD被引
21
次
|
|
|
|
19.
Kwan W P. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems.
Environmental Science & Technology,2003,37(6):1150-1158
|
CSCD被引
55
次
|
|
|
|
20.
Larese-Casanova P. Heterogeneous oxidation of Fe (II) on iron oxides in aqueous systems: Identification and controls of Fe (III) product formation.
Geochimica et Cosmochimica Acta,2012,91:171-186
|
CSCD被引
5
次
|
|
|
|
|