帮助 关于我们

返回检索结果

Computing the Maximal Eigenpairs of Large Size Tridiagonal Matrices with $\mathcal{O}\left(1 \right)$ Number of Iterations

查看参考文献17篇

Tang Tao *   Yang Jiang *  
文摘 In a series of papers, Chen [4-6] developed some efficient algorithms for computing the maximal eigenpairs for tridiagonal matrices. The key idea is to explicitly construct effective initials for the maximal eigenpairs and also to employ a self-closed iterative algorithm. In this paper, we extend Chen's algorithm to deal with large scale tridiagonal matrices with super-/sub-diagonal elements. By using appropriate scalings and by optimizing numerical complexity, we make the computational cost for each iteration to be $\mathcal{O}\left(N \right)$. Moreover, to obtain accurate approximations for the maximal eigenpairs, the total number of iterations is found to be independent of the matrix size, i.e., $\mathcal{O}\left(1 \right)$ number of iterations. Consequently, the total cost for computing the maximal eigenpairs is $\mathcal{O}\left(N \right)$The effectiveness of the proposed algorithm is demonstrated by numerical experiments.
来源 Numerical Mathematics Theory , Methods and Applications,2018,11(4):877-894 【核心库】
DOI 10.4208/nmtma.2018.s11
关键词 Maximal eigenpair ; large size tridiagonal matrix ; scaling ; complexity
地址

Department of Mathematics, Southern University of Science and Technology, Shenzhen

语种 英文
文献类型 研究性论文
ISSN 1004-8979
学科 数学
基金 supported by the Special Project on High-Performance Computing of the National Key R&D Program ;  国家自然科学基金 ;  the Science Challenge Project
文献收藏号 CSCD:6405414

参考文献 共 17 共1页

1.  Arbenz P. Lecture notes on solving large scale eigenvalue problems,2016 CSCD被引 1    
2.  Barth W. Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection. Numer. Math,1967,9:386-393 CSCD被引 2    
3.  Chen M F. Eigenvalues, Inequalities, and Ergodic Theory,2005 CSCD被引 30    
4.  Chen M F. Efficient initials for computing maximal eigenpair. Front. Math. China,2016,11:1397-1418 CSCD被引 2    
5.  Chen M F. Global algorithms for maximal eigenpair. Front. Math. China,2017,12(5):1023-1043 CSCD被引 8    
6.  Chen M F. Trilogy on computing maximal eigenpair. International Conference on Queueing Theory and Network Applications,2017:312-329 CSCD被引 1    
7.  Coakley E S. Afost divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices. Appl. Comput. Harmon. A,2012,34:379-414 CSCD被引 3    
8.  Dumitriu I. Matrix models for beta ensembles. J. Math. Phys,2002,43:5830-5847 CSCD被引 8    
9.  Edelman A. Numerical methods for eigenvalue distributions of random matrix,2005 CSCD被引 1    
10.  Edelman A. Random matrix theory, Acta Numerica,2005:1-65 CSCD被引 1    
11.  Gill D. An O(N~2) method for computing the eigensystem of N × N symmetric tridiagonal matrices by the divide and conquer approach. SIAM J. Sci. Stat. Comp,1990,11:161-173 CSCD被引 2    
12.  Smith G D. Numerical Solution of Partial Differential Equations, 2nd Ed,1978 CSCD被引 1    
13.  Golub G H. Calculation of Gauss quadrature rules. Math. Comp,1969,23:221-239 CSCD被引 22    
14.  Gu M. A divide-and-conquer algorithm for the symmetric tridiagonal eigen-problem. SIAM J. Matrix Anal. Appl,1995,16:172-191 CSCD被引 7    
15.  Ipsen I C F. Solving the symmetric tridiagonal eigenvalue problem on the hypercube. SIAM J. Sci. Stat. Comput,1990,11(2):203-229 CSCD被引 2    
16.  Saad Y. Numerical methods for large eigenvalue problems,2011 CSCD被引 5    
17.  Szyld D B. Criteria for combining inverse and Rayleigh quotient iteration. SIAM J. Numer. Anal,1988,25:1369-1375 CSCD被引 4    
引证文献 3

1 Chen Mufa Hermitizable,isospectral complex matrices or differential operators Frontiers of Mathematics in China,2018,13(6):1267-1311
CSCD被引 11

2 Chen Mufa Development of powerful algorithm for maximal eigenpair Frontiers of Mathematics in China,2019,14(3):493-519
CSCD被引 6

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号