支撑裂缝导流能力的数值模拟
Numerical simulation on propped fracture conductivity
查看参考文献45篇
文摘
|
裂缝导流能力一般是利用室内实验进行评价,周期长、成本高且仅能测试较短时间的裂缝导流能力.笔者通过离散元颗粒流程序生成了真实尺寸的支撑剂颗粒,再现了微小支撑剂颗粒之间、支撑剂与裂缝面之间的高度非线性接触的物理本质.通过CFD,计算了支撑剂簇空隙流体与支撑剂的流固耦合作用,建立了支撑裂缝的裂缝导流能力的数值模拟模型,开展裂缝闭合应力、储层弹性模量、铺砂浓度和支撑剂组合形式等对裂缝导流能力的影响规律研究,揭示了支撑裂缝导流能力的变化机理.数值模拟结果显示,裂缝导流能力与铺砂浓度和支撑剂颗粒成正比,与闭合应力以及支撑剂嵌入深度成反比. |
其他语种文摘
|
The fracture conductivity is mainly evaluated by laboratory experiments and characterized by long time period and high cost. In this paper, the real size of proppant particles is obtained using the discrete element method (DEM)to reproduce the physical properties of highly non-linear contacts between minor proppant particles as well as between the proppant and fracture surface. The computational fluid dynamics (CFD)is applied to calculate the fluid- solid coupling effect between the proppant and proppant-cluster interstitial fluid. A numerical simulation model is established for calculating the fracture conductivity of propped fracture. The effects of fracture closing stress, elastic modulus of reservoir formation, sanding concentration and proppant combination on fracture conductivity are studied to reveal the change mechanism of propped fracture conductivity. The numerical simulation results indicate that the fracture conductivity is in proportion to sanding concentration and proppant particles,and is inverse proportion to fracture closing stress and embedded proppant depth. |
来源
|
石油学报
,2018,39(12):1410-1420 【核心库】
|
DOI
|
10.7623/syxb201812009
|
关键词
|
离散元方法
;
计算流体力学
;
裂缝导流能力
;
支撑裂缝
;
支撑剂
|
地址
|
1.
西南石油大学, 油气藏地质及开发工程国家重点实验室, 四川, 成都, 610500
2.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
3.
中国石油化工股份有限公司胜利油田分公司油气勘探管理中心, 山东, 东营, 257000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-2697 |
学科
|
石油、天然气工业 |
基金
|
国家自然科学基金
;
中国博士后科学基金
|
文献收藏号
|
CSCD:6394358
|
参考文献 共
45
共3页
|
1.
Hubbert M K. Mechanics of hydraulic fracturing.
Transactions of Society of Petroleum Engineers of AIME,1957,210:153-168
|
CSCD被引
102
次
|
|
|
|
2.
朱海燕. 定向射孔水力压裂起裂压力的预测模型.
石油学报,2013,34(3):556-562
|
CSCD被引
15
次
|
|
|
|
3.
Zhu Haiyan. Hydraulic fracture initiation and propagation from wellbore with oriented perforation.
Rock Mechanics and Rock Engineering,2015,48(2):585-601
|
CSCD被引
13
次
|
|
|
|
4.
刘奎. 页岩气水平井压裂对井筒完整性的影响.
石油学报,2016,37(3):406-414
|
CSCD被引
31
次
|
|
|
|
5.
Hammond P S. Settling and slumping in a Newtonian slurry,and implications for proppant placement during hydraulic fracturing of gas wells.
Chemical Engineering Science,1995,50(20):3247-3260
|
CSCD被引
8
次
|
|
|
|
6.
Weaver J D.
A study of proppant Formation reactions. SPE 121465,2009
|
CSCD被引
1
次
|
|
|
|
7.
Barree R D. Experimental and numerical modeling of convective proppant transport (includes associated papers 31036 and 31068).
Journal of Petroleum Technology,1995,47(3):216-222
|
CSCD被引
7
次
|
|
|
|
8.
Dayan A.
Proppant transport in slickwater fracturing of shale gas formations. SPE 125068,2009
|
CSCD被引
3
次
|
|
|
|
9.
李海涛. 水平井多段分簇射孔优化设计.
特种油气藏,2016,23(3):133-135
|
CSCD被引
5
次
|
|
|
|
10.
管保山. 压裂返排液取水应用技术.
石油学报,2017,38(1):99-104
|
CSCD被引
8
次
|
|
|
|
11.
Zhu Haiyan. DEM-CFD modeling of proppant pillar deformation and stability during the fracturing fluid flowback.
Geofluids,2018,2018:3535817
|
CSCD被引
3
次
|
|
|
|
12.
American Petroleum Institute.
Recommended practices for evaluating short term proppant pack conductivity:API RP 61,1989
|
CSCD被引
1
次
|
|
|
|
13.
Kassis S.
Fracture permeability of gas shale:effect of roughness,fracture offset,proppant,and effective stress. SPE 131376,2010
|
CSCD被引
1
次
|
|
|
|
14.
董光. 煤层水力压裂裂缝导流能力实验评价.
科学技术与工程,2013,13(8):2049-2052
|
CSCD被引
4
次
|
|
|
|
15.
Aven N K.
Long-term dynamic flow testing of proppants and effect of coatings. SPE 165118,2013
|
CSCD被引
1
次
|
|
|
|
16.
Raysoni N.
Long-term proppant performance. SPE 150669,2012
|
CSCD被引
1
次
|
|
|
|
17.
Wen Qingzhi. The effect of proppant embedment upon the long-term conductivity of fractures.
Journal of Petroleum Science and Engineering,2007,55(3/4):221-227
|
CSCD被引
14
次
|
|
|
|
18.
Renkes I.
Long term conductivity vs.point specific conductivity. SPE 184814,2017
|
CSCD被引
1
次
|
|
|
|
19.
Rayson N.
Improved understanding of proppant-formation interactions for sustaining fracture conductivity. SPE 160885,2012
|
CSCD被引
1
次
|
|
|
|
20.
Li Haitao. A new mathematical model to calculate sand-packed fracture conductivity.
Journal of Natural Gas Science and Engineering,2016,35:567-582
|
CSCD被引
4
次
|
|
|
|
|