高功率半导体激光器互连界面可靠性研究
Reliability of bonding interface in high power diode lasers
查看参考文献10篇
文摘
|
随着高功率半导体激光器(HPLD)在极端环境中的应用越来越广泛,互连界面的可靠性已成为制约其性能和寿命的关键瓶颈之一。文中利用有限元方法(FEM)对传导冷却(CS)高功率半导体激光器巴条互连界面在-55~125 ℃热冲击条件下的失效行为和寿命进行了模拟与分析。基于粘塑性Anand本构模型和Darveaux能量积累理论,对比了热冲击后界面层边缘及中心位置铟互连界面的可靠性,发现互连界面边缘的应力最大,达到0.042 5 GPa;相应的边缘位置的寿命最短,只有3 006个周期,即边缘位置为互连界面的“最危险单元”。预测了采用铟、金锡合金和纳米银焊膏封装的半导体激光器巴条的寿命,计算出铟、金锡合金和纳米银焊膏三种不同键合材料在边缘位置的寿命分别为3 006、 4 808和4 911次循环,表明纳米银焊膏和金锡合金在热冲击条件下具有更长的寿命,更适合于用于极端环境的高功率半导体激光器封装。 |
其他语种文摘
|
With the rapidly increasing applications of high power laser diode (HPLD) in extreme environments, the reliability of bonding interface has become one of the critical bottlenecks affecting the HPLD' s performance and lifetime. In this work, failure behavior and lifetime of a single -bar CS - packaged HPLD under -55-125℃ thermal-shock were analyzed by finite element method (FEM). Based on Anand constitutive model and Darveaux energy accumulation theory, the reliability of indium bonding layer on the edge and at the central position after the themal-shock was compared. It shows that the bonding interface on the edge has the highest stress (0.042 5 GPa) and lowest lifetime (3 006 cycles), in other words, the edge is the "riskiest element" of the bonding interface. In addition, the lifetimes of three kinds of bonding layers on the edge, including indium, 80Au20Sn and nanosilver paste, were simulated to be 3 006, 4 804 and 4 911 cycles, respectively. The results show nanosilver paste and 80Au20Sn have longer lifetimes and better reliability, which are better bonding materials in the packaging of high power laser diodes used in extreme enviroments. |
来源
|
红外与激光工程
,2018,47(11):1105002-1-1105002-8 【核心库】
|
DOI
|
10.3788/IRLA201847.1105002
|
关键词
|
可靠性
;
高功率半导体激光器
;
互连界面
;
寿命
;
有限元
|
地址
|
1.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2276 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6378609
|
参考文献 共
10
共1页
|
1.
Wang Yinshun. Study of high brightness fiber coupled diode lasers.
Infrared and Laser Engineering. (in Chinese),2016,45(S2):S206004
|
CSCD被引
1
次
|
|
|
|
2.
Wu D. Optimization of microchannel cooler of high power diode laser array package.
SPIE. 100851,2017:100850I
|
CSCD被引
1
次
|
|
|
|
3.
He Guorong. Influence of fusion interface on optical and thermal characteristics of vertical cavity lasers.
Infrared and Laser Engineering. (in Chinese),2007,36(6):798-801
|
CSCD被引
1
次
|
|
|
|
4.
Zhang P. Thermal characteristics of compact conduction-cooled high power diode laser array packages".
SPIE. 10085,2017:100850A
|
CSCD被引
1
次
|
|
|
|
5.
Chang Ruiwu.
Influence of cryogenic temperature and microstructure on fatigue failure of indium solder joint,2008
|
CSCD被引
1
次
|
|
|
|
6.
Kong Da. Fatigue lifetime p-rediction of SnAgCu-X solder based on Anand model.
Transactions of The China Welding Institution. (in Chinese),2017,38(4):17-21,129
|
CSCD被引
1
次
|
|
|
|
7.
Zhang Guoshang.
Research on the mechanical properties of 80Au/20Sn solder alloy. (in Chinese),2010
|
CSCD被引
1
次
|
|
|
|
8.
Zhang Pengzhe.
Research on process and mechanism of bonding using small nanosil ver paste at low temperature and pressure. (in Chinese),2016
|
CSCD被引
1
次
|
|
|
|
9.
Paydar N H. A finite element study of factors affecting fatigue life of solder joints.
ASME Journal of Electronic Packaging,1994,116(2):265-273
|
CSCD被引
4
次
|
|
|
|
10.
Darveaux R. Effect of simulation methodology on solder joint crack growth correlation and fatigue life prediction.
Journal of Electronic Packaging,2002,124(3):147-154
|
CSCD被引
11
次
|
|
|
|
|