封装对大功率半导体激光器阵列热应力及Smile的影响
Effect of Packaging on Thermal Stressand Smile of High Power Semiconductor Laser Arrays
查看参考文献22篇
文摘
|
提出一种采用双铜-金刚石的“三明治”封装结构,利用有限元分析方法研究了其与传统的Cu + CuW硬焊料封装结构激光器的热应力与Smile.对比模拟结果发现新封装结构热应力降低43.8%,Smile值增加95%.在次热沉热膨胀系数与芯片材料匹配的情况下,使用弹性模量更大的次热沉材料,可对芯片层热应力起到更好的缓冲作用.以硬焊料封装结构为例,分析了负极和次热沉厚度对器件Smile的影响.结果表明负极片厚度从50 μm增加到300 μm,器件工作结温降低2.26 ℃,Smile减小0.027 μm,芯片的热应力增加22.95 MPa.当次热沉与热沉的厚度比小于29%时,Smile随次热沉厚度增加而增加;而当次热沉厚度超过临界点后,Smile随次热沉厚度增加而减小.当次热沉厚度达到临界点(2300 μm)时,硬焊料封装的半导体激光器具有最大的Smile值3.876 μm.制备了CuW厚度分别为300 μm和400 μm的硬焊料封装976 nm激光器,并测量了其发光光谱.通过对比峰值波长漂移量,发现CuW厚度增加了100 μm,波长红移增加了1.25 nm,根据温度和应力对波长的影响率可知应力减小了18.05 MPa.测得两组器件的平均Smile值分别为0.904 μm和1.292 μm.实验证明增加CuW厚度可减小芯片所受应力,增大Smile值. |
其他语种文摘
|
A ″sandwich″ structure based on copper-diamond is proposed,the thermal stress and Smile of the proposed structure and traditional Cu + CuW hard-solder packaged laser are studied by finite element analysis. Comparison of simulation results shows that the thermal stress of the new package structure is reduced by 43.8% and the Smile value is increased by 95%. When the coefficients of thermal expansion of laser chip and submount are matched,the submount materials with larger elastic modulus can better buffer the thermal stress of the chip. Taking the widely used Cu + CuW hard-solder package structure as an example,the influence of negative electrode and substrate thickness on the Smile of diode laser chip is studied. It shows that when the thickness of the negative electrode increases from 50 μm to 300 μm,the junction temperature of the chip decreases by 2.26 ℃,the Smile value decreases by 0.027 μm,and the thermal stress increases by 22.95 MPa. When the thickness ratio of the substrate to the heat sink is less than 29%,the Smile value increases with the increase of the thickness of the heat sink,and when the ratio exceeds the critical point,the Smile value start to decrease. Hard-solder packaged semiconductor lasers have a maximum Smile value of 3.876μm at a critical thickness of 2300 μm. Hard-solder packaged 976 nm lasers with CuW thicknesses of 300 μm and 400 μm are fabricated. The luminescence spectra are measured. By comparing the peak wavelength shifts,it is found that when the CuW thickness increased by 100 μm,the red shift of wavelength increased by 1.25 nm. According to the effect of temperature and stress on the wavelength,the stress is reduced by 18.05 MPa; the average Smile values of the devices are also measured,which are 0.904 μm and 1.292 μm respectively. Experiments show that the increase in CuW thickness can reduce the stress in the chip,but increase the Smile value. |
来源
|
光子学报
,2018,47(6):0614001-1-0614001-11 【核心库】
|
DOI
|
10.3788/gzxb20184706.0614001
|
关键词
|
大功率半导体激光器
;
封装
;
有限元分析
;
热应力
;
Smile
|
地址
|
1.
中国科学院西安光学精密机械研究所, 中国科学院瞬态光学与光子技术重点实验室, 西安, 710119
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
电子技术、通信技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6263492
|
参考文献 共
22
共2页
|
1.
Liu X S. A study on the reliability of indium solder die bonding of high power semiconductor lasers.
Journal of Applied Physics,2006,100(1):013104
|
CSCD被引
6
次
|
|
|
|
2.
宋晏蓉. 半导体可饱和吸收镜调Q的Yb:LSO激光器.
中国激光,2006,33(10):1297-1300
|
CSCD被引
3
次
|
|
|
|
3.
高松信. 高功率二极管激光器封装的多层焊接技术.
强激光与粒子束,2003,15(5):447-449
|
CSCD被引
19
次
|
|
|
|
4.
曹银花. 光束质量超过全固态激光器的千瓦直接半导体激光器.
中国激光,2009,36(9):2282-2285
|
CSCD被引
13
次
|
|
|
|
5.
李景. 基于外腔反馈二极管线阵列的smile效应测量方法.
发光学报,2017,38(10):1302-1306
|
CSCD被引
2
次
|
|
|
|
6.
陈华. 封装热应力致半导体激光器"Smile"效应的抑制方法.
发光学报,2017,38(5):656-662
|
CSCD被引
2
次
|
|
|
|
7.
Schleuning D. Robust hard-solder packaging of conduction cooled laser diode bars.
SPIE. 6456,2007:645604
|
CSCD被引
1
次
|
|
|
|
8.
袁振邦. 大功率半导体激光器阵列的稳态和瞬态热行为.
中国激光,2009,36(8):1957-1962
|
CSCD被引
8
次
|
|
|
|
9.
郎超. 半导体激光器阵列的"Smile"效应对光束质量的影响.
中国激光,2012,39(5):502006
|
CSCD被引
1
次
|
|
|
|
10.
Tomm J W. Simultaneous quantification of strain and defects in high-power diode laser devices.
Applied Physics Letters,2002,81(17):3269-3271
|
CSCD被引
6
次
|
|
|
|
11.
Frevert C. 940 nm QCW diode laser bars with 70% efficiency at 1 kW output power at 203 K:analysis of remaining limits and path to higher efficiency and power at 200K and 300K.
SPIE. 9733,2016:97330L
|
CSCD被引
1
次
|
|
|
|
12.
王淑娜. 温度对高功率半导体激光器阵列"Smile"的影响.
光子学报,2016,45(5):0514001
|
CSCD被引
6
次
|
|
|
|
13.
鲁瑶. 传导冷却单巴高功率半导体激光器热应力和smile研究.
光子学报,2017,46(9):0914001
|
CSCD被引
3
次
|
|
|
|
14.
Weiß S. Design,simulation and technological realization of a reliable packaging concept for high power laser bars.
proceedings of the Electronic Components & Technology Conference,1998:569-5503
|
CSCD被引
1
次
|
|
|
|
15.
Schleuning D. Material survey for packaging semiconductor diode lasers.
SPIE. 7198,2009:71981K
|
CSCD被引
1
次
|
|
|
|
16.
Du J. 8xx nm kW conduction cooled QCW diode arrays with both electrically conductive and insulating submounts.
SPIE. 6876,2008:687605
|
CSCD被引
1
次
|
|
|
|
17.
谈耀麟. 导电金刚石及其应用.
超硬材料工程,2007,19(3):32-34
|
CSCD被引
1
次
|
|
|
|
18.
堵永国. 常用触点材料的物理性能.
电工材料,2002,1(1):35-39
|
CSCD被引
4
次
|
|
|
|
19.
张修瑞. 纳秒脉冲激光制孔孔壁热应力数值模拟研究.
航空制造技术,2016,504(9):74-78
|
CSCD被引
1
次
|
|
|
|
20.
Zhang Y. Applicability range of Stoney's formula and modified formulas for a film/substrate bilayer.
Journal of Applied Physics,2006,99(5):053513
|
CSCD被引
2
次
|
|
|
|
|