A novel method for chemistry tabulation of strained premixed/stratified flames based on principal component analysis
查看参考文献27篇
文摘
|
The principal component analysis (PCA) is used to analyze the high dimensional chemistry data of laminar premixed/stratified flames under strain effects. The first few principal components (PCs) with larger contribution ratios are chosen as the tabulated scalars to build the look-up chemistry table. Prior tests show that strained premixed flame structure can be well reconstructed. To highlight the physical meanings of the tabulated scalars in stratified flames, a modified PCA method is developed, where the mixture fraction is used to replace one of the PCs with the highest correlation coefficient. The other two tabulated scalars are then modified with the Schmidt orthogonalization. The modified tabulated scalars not only have clear physical meanings, but also contain passive scalars. The PCA method has good commonality, and can be extended for building the thermochemistry table including strain rate effects when different fuels are used. |
来源
|
Applied Mathematics and Mechanics. English Edition
,2018,39(6):855-866 【核心库】
|
DOI
|
10.1007/s10483-018-2326-6
|
关键词
|
premixed flame
;
stratified flame
;
strain rate
;
principal component analysis (PCA)
;
chemistry table
|
地址
|
1.
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, 230027
2.
School of Mechatronics Engineering, Chizhou University, Anhui, Chizhou, 247000
3.
Shenyang Engine Research Institute, Aero Engine (Group) Corporation of China, Shenyang, 110015
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
0253-4827 |
学科
|
能源与动力工程 |
基金
|
国家自然科学基金
;
the Natural Key Program of Chizhou University
|
文献收藏号
|
CSCD:6237745
|
参考文献 共
27
共2页
|
1.
Van Oijen J A. Modelling of premixed laminar flames using flamelet-generated manifolds.
Combustion Science and Technology,2000,161:113-137
|
CSCD被引
25
次
|
|
|
|
2.
Gicquel O. Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion.
Proceedings of the Combustion Institute,2008,28:1901-1908
|
CSCD被引
12
次
|
|
|
|
3.
Fiorina B. Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation.
Combustion and Flame,2005,140:147-160
|
CSCD被引
7
次
|
|
|
|
4.
Trouve A. The evolution equation for the flame surface density in turbulent premixed combustion.
Journal of Fluid Mechanics,1994,278:1-31
|
CSCD被引
3
次
|
|
|
|
5.
Hawkes E R. A flame surface density approach to large-eddy simulation of premixed turbulent combustion.
Proceedings of the Combustion Institute,2000,126:1617-1629
|
CSCD被引
1
次
|
|
|
|
6.
Kunne G.
Large Eddy Simulation of Premixed Combustion Using Artificial Flame Thickening Coupled with Tabulated Chemistry, Optimus-Verl,2012
|
CSCD被引
1
次
|
|
|
|
7.
Emami S. Numerical simulation of flame acceleration and fast deflagrations using artificial thickening flame approach.
25th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS),2015
|
CSCD被引
1
次
|
|
|
|
8.
Najafi-Yazdi A. Systematic definition of progress variables and intrinsically low-dimensional, flamelet generated manifolds for chemistry tabulation.
Combustion and Flame,2012,159:1197-1204
|
CSCD被引
5
次
|
|
|
|
9.
Tay-Wo-Chong L. Combined influence of strain and heat loss on turbulent premixed flame stabilization.
Flow Turbulence and Combustion,2016,97:263-294
|
CSCD被引
1
次
|
|
|
|
10.
Kolla H. Strained flamelets for turbulent premixed flames, i: formulation and planar flame results.
Combustion and Flame,2010,157:943-954
|
CSCD被引
4
次
|
|
|
|
11.
Kolla H. Strained flamelets for turbulent premixed flames, ii: laboratory flame results.
Combustion and Flame,2010,157:1274-1289
|
CSCD被引
6
次
|
|
|
|
12.
Edward K. Les of a premixed jet flame DNS using a strained flamelet model.
Combustion and Flame,2013,160:2911-2927
|
CSCD被引
1
次
|
|
|
|
13.
Moore B C. Principle component analysis in linear systems: controllability, observability, and model reduction.
IEEE Transactions on Automatic Control,1981,26:17-32
|
CSCD被引
151
次
|
|
|
|
14.
Edward Jackson J.
A User's Guide to Principal Components,1991
|
CSCD被引
1
次
|
|
|
|
15.
Abdi H.
Principal Component Analysis,2010
|
CSCD被引
1
次
|
|
|
|
16.
Sutherland J C. Combustion modeling using principal component analysis.
Proceedings of the Combustion Institute,2009,32:1563-1570
|
CSCD被引
5
次
|
|
|
|
17.
Parente A. Investigation of the mild combustion regime via principal component analysis.
Proceedings of the Combustion Institute,2011,33:3333-3341
|
CSCD被引
3
次
|
|
|
|
18.
Coussement A. Kernel density weighted principal component analysis of combustion process.
Combustion and Flame,2012,159:2844-2855
|
CSCD被引
4
次
|
|
|
|
19.
Coussement A. MG-local-PCA method for reduced order combustion modeling.
Proceedings of the Combustion Institute,2013,34:1117-1123
|
CSCD被引
2
次
|
|
|
|
20.
Isaac B. Source term parameterization for PCA combustion modelling.
6th European Combustion Meeting,2013
|
CSCD被引
1
次
|
|
|
|
|