放电等离子烧结对TiB_2/AlCoCrFeNi复合材料组织与性能的影响
Effect of Spark Plasma Sintering on Microstructure and Properties of TiB_2/AlCoCrFeNi Composites
查看参考文献14篇
文摘
|
采用放电等离子烧结方法(SPS),制备体积分数5% TiB_2的等摩尔AlCoCrFeNi高熵合金基复合材料。通过密度测试、X射线衍射、扫描电镜及力学性能测试等方法,研究SPS烧结温度及烧结压力对复合材料的微结构演变与力学性能影响。结果表明:随着SPS烧结温度及烧结压力的增加,复合材料的硬度及抗压强度得到明显提高。在1200℃/30MPa进行SPS烧结后,复合材料的致密度达99.6%,抗压强度达2416MPa,屈服强度达1474MPa,硬度超过470HB。烧结过程中,复合材料的基体高熵合金发生相变,1200℃及30~45MPa烧结时,复合材料由BCC,B2,FCC,σ及TiB_2相组成。 |
其他语种文摘
|
The equal molar AlCoCrFeNi high entropy alloys with 5% (volume fraction)TiB_2particles reinforcement were fabricated by spark plasma sintering(SPS).Effect of SPS temperature and pressure on microstructure evolution and mechanical properties of TiB_2/AlCoCrFeNi composites was studied using X-raydiffraction(XRD),density testing,scanning electron microscopy(SEM)and mechanical properites testing.The results show that increasing SPS temperature and pressure can improve hardness and compressive strength of TiB_2/AlCoCrFeNi composites.The relative density,compressive strength,yield strength and hardness of the TiB_2/AlCoCrFeNi composite after sintering at 1200℃and 30MPa are 99.6%,2416MPa,1474MPa and 470HB,respectively.During spark plasma sintering,phase transformation occurs in the high entropy alloy matrix of the composite.The composite after sintering at 1200℃and 30-45MPa is composed of phases BCC,B2,FCC,TiB_2 and σ. |
来源
|
材料工程
,2018,46(3):22-27 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2016.000769
|
关键词
|
高熵合金基复合材料
;
放电等离子烧结
;
致密化
;
显微组织
;
力学性能
|
地址
|
1.
中南大学, 轻质高强结构材料国家重点实验室, 长沙, 410083
2.
中南大学, 粉末冶金国家重点实验室, 长沙, 410083
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
湖南省自然科学基金
;
国家自然科学基金
|
文献收藏号
|
CSCD:6226106
|
参考文献 共
14
共1页
|
1.
Yeh J W. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcome.
Adv Eng Mater,2004,6(5):299-303
|
CSCD被引
1460
次
|
|
|
|
2.
Zhang Y. Solid-solution phase formation rules for multi-component alloys.
Adv Eng Mater,2008,10(6):534-538
|
CSCD被引
268
次
|
|
|
|
3.
Zhang Y. Microstructures and properties of high-entropy alloys.
Prog Mater Sci,2014,61(1):11-93
|
CSCD被引
1
次
|
|
|
|
4.
Santaodonato L J. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy.
Nature Commun,2015,6:5964-5971
|
CSCD被引
1
次
|
|
|
|
5.
Zou Y. Ultrastrong ductile and stable high-entropy alloys at small scales.
Nature Commun,2015,6:1-13
|
CSCD被引
65
次
|
|
|
|
6.
Gludozatz B. A fracture-resistant high-entropy alloy for cryogenic applications.
Science,2014,345(6201):1153-1158
|
CSCD被引
541
次
|
|
|
|
7.
Li B Y. Structure and properties of FeCoNiCrCu_(0.5)Al_x high-entropy alloy.
Transactions of Nonferrous Metals Society of China,2013,23(3):735-741
|
CSCD被引
31
次
|
|
|
|
8.
谢红波. Al元素对Al_xFeCrCoCuV高熵合金组织及摩擦性能的影响.
材料工程,2016,44(4):65-70
|
CSCD被引
7
次
|
|
|
|
9.
盛洪飞.
AlxCoCrCuFeNi系高熵合金及其复合材料的制备、微结构及性能研究,2014
|
CSCD被引
1
次
|
|
|
|
10.
Fan Q C. The microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys and their TiC-reinforced composites.
Mater Sci Eng A,2014,598(3):244-250
|
CSCD被引
17
次
|
|
|
|
11.
Mileiko S T. Oxide-fibre/high entropy alloy matrix composites.
Composites: Part A,2015,76(9):131-134
|
CSCD被引
1
次
|
|
|
|
12.
Cheng J B. Evolution of microstructure and mechanical properties of in situsynthesized TiC-TiB2/CoCr-CuFeNi high entropy alloy coatings.
Surface & Coatings Technology,2015,281(10):109-116
|
CSCD被引
20
次
|
|
|
|
13.
Wang W R. Effects of Al addition on the microstructure and mechanical property of Alx-CoCrFeNi high-entropy alloys.
Intermetallics,2012,26(7):44-51
|
CSCD被引
130
次
|
|
|
|
14.
Chuang M H. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiyhigh-entropy alloy.
Acta Mater,2011,59(16):6308-6317
|
CSCD被引
188
次
|
|
|
|
|