3D打印柔性可穿戴锂离子电池
3DPrinting of Flexible Electrodes Towards Wearable Lithium Ion Battery
查看参考文献24篇
文摘
|
利用挤出式3D打印技术制备纺织物结构的自支撑柔性锂离子电池电极的新方法,并采用高浓度的聚偏氟乙烯(PVDF)作为黏度调节剂、碳纳米管(CNT)作为导电剂、磷酸铁锂或钛酸锂作为电极活性材料,配制了具有可打印性的 “墨水”,其表观黏度接近105Pa·s,该“墨水”表现出明显的剪切变稀行为,同时存储模量平台值也高达105Pa,其优异的流变学性质对于打印和固化过程十分有利。电化学测试结果表明,两种打印电极具有稳定且十分匹配的充放电比容量,因此由二者组装的软包袋装全电池也具有高达~108mAh·g~(-1)的放电比容量(50mA·g~(-1)),弯曲后,在同样的电流密度下其放电比容量约为111mAh·g~(-1)。 |
其他语种文摘
|
A novel method to fabricate flexible free-standing electrodes with textile structure for lithium- ion batteries was provided by applying extrusion-based three-dimensional(3D)printing technology. Meanwhile,highly concentrated poly(vinylidene fluoride)(PVDF)is used as viscosity modifier, carbon nanotube(CNT)as conducting additive,and lithium iron phosphate(LFP)or lithium titanium oxide(LTO)as cathode or anode active materials respectively to develop printable inks with obvious shear-thinning behavior,and with the apparent viscosity and storage modulus platform value of over 105 Pa·s,which is beneficial to the printability and enable complex 3Dstructures solidification. The electrochemical test shows that both printed electrodes have similar charge and discharge specific capacities under current density of 50mA·g~(-1).To explore the feasibility of the printed electrodes, apouch cell with as-printed LFP and LTO electrode as cathode and anode respectively is assembled. The pouch cell without deformation delivers discharge specific capacities of approximately 108mAh·g~(-1),and there is a tiny increase in discharge specific capacities of around 111mAh·g~(-1) for bended pouch cell. |
来源
|
材料工程
,2018,46(3):13-21 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2017.001029
|
关键词
|
柔性/可穿戴电子学
;
打印电极
;
3D打印技术
;
锂离子电池
|
地址
|
哈尔滨工业大学化工与化学学院, 哈尔滨, 150001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
机械、仪表工业;化学工业 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6226105
|
参考文献 共
24
共2页
|
1.
Zhong J. Fiber-based generator for wearable electronics and mobile medication.
ACS Nano,2014,8(6):6273-6280
|
CSCD被引
36
次
|
|
|
|
2.
Jeong G S. Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer.
Nature Communications,2012,3(1):1-8
|
CSCD被引
7
次
|
|
|
|
3.
Sumboja A. Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device.
Advanced Materials,2013,25(20):2809-2815
|
CSCD被引
26
次
|
|
|
|
4.
Martirosyan N. Epidermal electronics.
World Neurosurgery,2011,76(6):485-486
|
CSCD被引
4
次
|
|
|
|
5.
Noda M. An OTFT-driven rollable OLED display.
J Soc Inf Display,2012,19(4):316-322
|
CSCD被引
2
次
|
|
|
|
6.
Etacheri V. Challenges in the development of advanced Li-ion batteries:a review.
Energy & Environmental Science,2011,4(9):3243-3262
|
CSCD被引
365
次
|
|
|
|
7.
Wang Z L. Oxygen electrocatalysts in metal-air batteries:from aqueous to nonaqueous electrolytes.
Chemical Society Reviews,2014,3(22):7746-7786
|
CSCD被引
81
次
|
|
|
|
8.
Hu L B. Stretchable,porous, and conductive energy textiles.
Nano Lett,2010,10(2):708-714
|
CSCD被引
59
次
|
|
|
|
9.
Sun K. 3Dprinting of interdigitated Li-ion microbattery architectures.
Adv Mater,2013,25(33):4539-4543
|
CSCD被引
93
次
|
|
|
|
10.
Zhu C. Highly compressible 3Dperiodic graphene aerogel microlattices.
Nat Commun,2011,6:1-8
|
CSCD被引
2
次
|
|
|
|
11.
Tumbleston J R. Additive manufacturing continuous liquid interface production of 3Dobjects.
Science,2015,347(6228):1349-1352
|
CSCD被引
130
次
|
|
|
|
12.
Ober T J. Active mixing of complex fluids at the microscale.
Proceedings of the National Academy of Sciences of the United States of America,2015,112(40):12293-12298
|
CSCD被引
15
次
|
|
|
|
13.
Sun K. 3Dprinting of interdigitated Li-ion microbattery architectures.
Adv Mater,2013,25:4539-4543
|
CSCD被引
93
次
|
|
|
|
14.
Milroy C A. Inkjet-printed lithiumesulfur microcathodes for all-printed,integrated nanomanufacturing.
Small,2017
|
CSCD被引
1
次
|
|
|
|
15.
Fu K. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries.
Adv Mater,2016,28(13):2587-2594
|
CSCD被引
51
次
|
|
|
|
16.
Lewis J A. Direct ink writing of 3Dfunctional materials.
Adv Funct Mater,2006,16(17):2193-2204
|
CSCD被引
56
次
|
|
|
|
17.
Rao R B. Microfabricated deposition nozzles for direct-write assembly of three-dimensional periodic structures.
Adv Mater,2005,17(3):289-293
|
CSCD被引
8
次
|
|
|
|
18.
Kim S H. Printable solid-state lithium-ion batteries:a new route toward shape-conformable power sources with aesthetic versatility for flexible electronics.
Nano Lett,2015,15(8):5168-5177
|
CSCD被引
15
次
|
|
|
|
19.
Lewis J A. Device fabrication:three-dimensional printed electronics.
Nature,2015,518(7537):42-43
|
CSCD被引
23
次
|
|
|
|
20.
Zhao Q. Phytic acid derived LiFePO_4 beyond theoretical capacity as high-energy density cathode for lithium ion battery.
Nano Energy,2017,34:408-420
|
CSCD被引
11
次
|
|
|
|
|