铝粉尘云团爆轰温压效应的数值模拟
Numerical Simulation of Detonation Temperature and Pressure Effects of Aluminum Powder Cloud
查看参考文献17篇
文摘
|
为研究粉尘云团形成的爆轰波在空气中传播过程及对周围环境的温压效应和毁伤规律,采用时-空守恒元解元算法两相流模型模拟了当量比为1,颗粒半径为2 μm的悬浮铝粉尘均匀分布形成的半径3.0 m的云团在空气中的爆轰波传播过程。研究结果表明:在冲击波到达云团边界处3.0 m位置时压力达到最大值2.10 MPa,而后压力产生衰减;冲击波到达4.7 m时铝粉尘全部反应完毕无剩余;铝粉尘反应形成的火球会向外运动可到达10.0 m处,火球内中心区域为温度3 500 K以上、密度0.120 kg/m~3的高温低密度区域;冲击波到达24.5 m处超压为0.10 MPa,达到致人死亡标准;冲击波到达28.0 m处时超压为0.09 MPa,可致人严重损伤。 |
其他语种文摘
|
In order to study the temperature and pressure effects of the detonation wave generated by dust clouds in the surrounding environment and its damage law, the two-phase flow model and space-time conservation element and solution element method are used to simulate the propagation of 3.0 m radius detonation wave in the air, which is formed by uniformly distributing the suspended aluminum dust with the equivalence ratio of 1 and the particle radius of 2 μm. The pressure reaches to maximum of 2.10 MPa when the detonation wave arrives at 3.0 m from the boundary of cloud, and then the pressure will decrease. The reaction of aluminum dust particles is completed without surplus at 4.7 m from the boundary of cloud. The fireball formed by the dust reaction move outwards to reach at 10 m from the boundary of cloud. The central area of fireball is a high-temperature and low-density area with temperature of above 3 500 K and density of 0.120 kg/m~3. The overpressure reaches to 0.10 MPa when the propagation distance of shock wave arrives at 24.5 m from the boundary of cloud. The overpressure reaches to 0.09 MPa when the shock wave arrives at 28.0 m from the boundary of cloud, which can cause serious injury to the human body. |
来源
|
兵工学报
,2018,39(1):101-110 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2018.01.011
|
关键词
|
温压弹
;
两相流
;
铝粉尘
;
数值模拟
|
地址
|
1.
北京理工大学机电学院, 北京, 100081
2.
北京应用物理与计算数学研究所, 北京, 100094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
力学 |
基金
|
国防基础科研基金
|
文献收藏号
|
CSCD:6187192
|
参考文献 共
17
共1页
|
1.
裴明敬. 含铝温压燃料性能研究.
含能材料,2007,15(5):442-446
|
CSCD被引
2
次
|
|
|
|
2.
郑波. 温压炸药爆炸抛洒的运动规律.
爆轰与冲击,2008,28(5):433-437
|
CSCD被引
1
次
|
|
|
|
3.
李秀丽. 云爆剂爆炸/冲击波参数研究.
含能材料,2008,16(4):410-414
|
CSCD被引
13
次
|
|
|
|
4.
洪滔. 铝颗粒激波点火机制初探.
爆轰与冲击,2003,23(4):295-299
|
CSCD被引
1
次
|
|
|
|
5.
洪滔. 悬浮铝粉尘爆轰波参数.
含能材料,2004,12(3):129-133
|
CSCD被引
6
次
|
|
|
|
6.
洪滔. 爆轰波管中铝粉尘爆轰的数值模拟.
爆轰与冲击,2004,24(3):193-200
|
CSCD被引
1
次
|
|
|
|
7.
昝文涛. 基于CE/SE方法模拟空气中RDX-Al悬浮粉尘的两相爆轰.
爆炸与冲击,2016,36(5):603-610
|
CSCD被引
3
次
|
|
|
|
8.
昝文涛. 带管道连接的空间中悬浮铝粉尘爆轰波传播数值模拟.
含能材料,2017,25(6):508-514
|
CSCD被引
2
次
|
|
|
|
9.
Zan W T. Simulation of Double-Front Detonation of Suspended Mixed Cyclotrimethylenetrinitramine and Aluminum Dust in Air.
Chinese Physics Letter,2017,34(7):074701
|
CSCD被引
1
次
|
|
|
|
10.
Steinberg T A. The combustion phase of burning particle.
Combustion and Flame,1992,91(2):200-208
|
CSCD被引
10
次
|
|
|
|
11.
Price E W. Combustion of metalized propellants.
Progress in Astronautics and Aeronautics: Fundamenals of Solid-Propellant Combustion,1984:479-513
|
CSCD被引
11
次
|
|
|
|
12.
Chang S C. The method of space-time conservation element and solution element-a new approach for solving the Navier-Stokes and Euler equations.
Journal of Computational Physics,1995,119(2):295-324
|
CSCD被引
102
次
|
|
|
|
13.
Zhang D L. High-order CE/SE method and applications.
Chinese Journal of Computational Physics,2009,26(2):211-220
|
CSCD被引
8
次
|
|
|
|
14.
Wang J T. A Eulerian approach based on CE/SE method for 2D multimaterial elastic-plastic flows.
Chinese Journal of Computational Physics,2007,24(4):395-401
|
CSCD被引
7
次
|
|
|
|
15.
Tulis A J. Detonation tube studies of aluminum particles dispersed in air.
Symposium (International) on Combustion,1982,19(1):655-663
|
CSCD被引
3
次
|
|
|
|
16.
洪滔. 悬浮RDX炸药和铝颗粒混合粉尘爆轰的数值模拟.
爆炸与冲击,2009,29(5):468-473
|
CSCD被引
3
次
|
|
|
|
17.
中国人民解放军总装备部.
GJB 5212-2004云爆弹定型实验规程,2004
|
CSCD被引
1
次
|
|
|
|
|