装载8-羟基喹啉的纳米SiO_2/环氧涂层的耐腐蚀机理研究
Investigation on Anti-corrosion Mechanism of 8-hydroxyquinoline Modified Nano-silica/epoxy Coatings
查看参考文献11篇
文摘
|
使用纳米SiO_2作为载体、8-羟基喹啉作为客体制备纳米SiO_2/8-羟基喹啉组合物,将其添加到环氧树脂中制备出装载8-羟基喹啉的纳米SiO_2/环氧涂层。对其进行盐雾和电化学阻抗谱实验,研究了装载8-羟基喹啉的纳米 SiO_2/环氧涂层的耐腐蚀机理。结果表明,纳米SiO_2/8-羟基喹啉组合物提高了环氧涂层的耐腐蚀性能,添加5%(质量分数)纳米SiO_2/8-羟基喹啉组合物的环氧涂层的耐腐蚀性能较优。8-羟基喹啉从纳米SiO_2孔道中释放并渗透到涂层与钢基材的界面形成含铁的铬合物膜,阻挡了腐蚀介质的渗入,使Q235钢基体的耐腐蚀性能提高。 |
其他语种文摘
|
Composites of 8-hydroxyquinoline/nano-SiO_2 were prepared with nano-SiO_2 as carrier and 8-hydroxyquinoline as modifier. Then the composistes were blended with epoxy resin to form the nanocomposite epoxy coating. The corrosion performance of the prepared composite coating was investigated by means of salt spray test and electrochemical impedance spectroscopy. Results show that composites of 8-hydroxyquinoline/nano-SiO_2 can improve the corrosion resistance of the epoxy coatings, among others the coating with 5% (mass fraction) 8-hydroxyquinoline/nano-SiO_2 was the optimal. The relevant mechanism may be ascribed to the fact that 8-hydroxyquinoline could release from pores of nano-SiO_2 and then penetrate to the interface coating/steel substrate forming Fe-containing complex, thus improving the corrosion resistance of the steel substrate. |
来源
|
材料研究学报
,2017,31(11):818-826 【核心库】
|
DOI
|
10.11901/1005.3093.2016.497
|
关键词
|
材料失效与保护
;
风电设备
;
纳米SiO_2
;
钢基体
;
缓释剂作用机理
|
地址
|
1.
中国科学院金属研究所, 中国科学院核用材料与安全评价重点实验室, 沈阳, 110016
2.
中国电器科学研究院有限公司, 工业产品环境适应性国家重点实验室, 广州, 510663
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-3093 |
学科
|
一般工业技术 |
基金
|
广东省中国电器院风电装备腐蚀控制关键技术院士工作站项目
;
广州市产学研协同创新联盟专项
|
文献收藏号
|
CSCD:6124913
|
参考文献 共
11
共1页
|
1.
Funke W. Toward a unified view of the mechanism responsible for paint defects by metallic corrosion.
Industrial & Engineering Chemistry Product Research & Development,1985,24(3):343
|
CSCD被引
6
次
|
|
|
|
2.
Gan Y. Experimental studies on the local corrosion of low alloy steels in 3.5% NaCl.
Corrosion Science,2001,43(3):397
|
CSCD被引
16
次
|
|
|
|
3.
Khramov A N. Hybrid organ-ceramic corrosion protection coatings with encapsulated organic corrosion inhibitors.
Thin Solid Films,2004,447/448:549
|
CSCD被引
15
次
|
|
|
|
4.
Zheludkevich M L. Triazole and thiazole derivatives as corrosion inhibitors for AA 2024 aluminum alloy.
Corrosion Science,2005,47(12):3368
|
CSCD被引
18
次
|
|
|
|
5.
Hu Tianhui. Cerium titrate as a corrosion inhibitor forAA 2024-T3.
Corrosion Science,2015,95:152
|
CSCD被引
6
次
|
|
|
|
6.
Zong Q. Active deposition of bis (8-hydroxyquinoline) magnesium coating for enhanced corrosion resistance of AZ91D alloy.
Corrosion Science,2014,89:127
|
CSCD被引
9
次
|
|
|
|
7.
Shen S. The effects of 8-hydroxyquinoline on corrosion performance of a Mg-rich coating on AZ91 Dmagnesium alloy.
Corrosion Science,2013,76(10):275
|
CSCD被引
11
次
|
|
|
|
8.
Shi Hongwei. Characterization of protective performance of epoxy reinforced with nanometer sized TiO_2 and SiO_2.
Progress in Organic Coatings,2008,62(4):359
|
CSCD被引
38
次
|
|
|
|
9.
李育珍. 叶酸功能化碳纳米管负载布洛芬及可控释放.
功能材料,2015,13(46):3070
|
CSCD被引
1
次
|
|
|
|
10.
魏萌. 新型8-羟基喹啉唑类化合物对HCl介质中碳钢的缓蚀作用.
腐蚀与防护,2014,35(2):142
|
CSCD被引
1
次
|
|
|
|
11.
赵小能. 有机类铜缓蚀剂的现状研究与发展.
科技信息,2008,21(1):38
|
CSCD被引
1
次
|
|
|
|
|