基于MODIS时序NDVI主要农作物种植信息提取研究
Extraction of Main Crops in Yellow River Delta Based on MODIS NDVI Time Series
查看参考文献32篇
文摘
|
农业在黄河三角洲地区占有重要地位,及时、准确地掌握该地区农作物分布信息对政府有关部门制定农业政策、指导农业生产具有十分重要的意义。时序植被指数能够反映农作物物候特征,帮助识别农作物类型,在农作物种植信息提取方面具有明显优势。论文选取2014年MOD09Q1时序遥感数据集,以黄河三角洲主要农作物为研究对象,利用Harmonic Analysis of NDVI Time-Series(Hants)滤波重构NDVI时序曲线,通过对比待分像元NDVI时序曲线与参考时序曲线的相似性,实现农作物种植信息提取。对分类结果进行面积统计和空间分布精度检验:冬小麦、棉花、玉米的面积提取精度分别达到96.8%、95.5%、85.1%,空间匹配总体精度达86.9%。结果表明该方法有效可行,能够为该地区农业监测提供技术基础。 |
其他语种文摘
|
Agriculture plays a key role in the Yellow River Delta, which is one of the greatest granaries of China. Timely and accurately understanding the crop distribution information is very important for related government departments to make reasonable decisions and guide agricultural production. Traditional methods based on field investigation and statistic data were time consuming and labor consuming. Time series of vegetation indices based on remote sensing images have obvious advantages and great application potentials in the extraction of crop planting information. This paper aimed at extracting the main crops in the Yellow River Delta, including winter wheat, maize and cotton. MODIS images with 250 m spatial resolution were used in this study. Dezhou City, Binzhou City and Dongying City were chosen as the study area for the convenience. The 250 m MOD09Q1 8 d time series remote sensing images in 2014 were acquired from the website of NASA. To avoid the disturbance from orchards and grasslands, firstly, the non-crop areas were masked out with the 1∶100 000 land use map of the study area in 2014. Considering that there were some irregular fluctuations of the NDVI time series caused by the influence of clouds and atmosphere, we secondly reconstructed the NDVI time series with Hants filters. Then, the main crops planting information was extracted by comparing the NDVI time series with the reference NDVI time series which were the average NDVI of the sampling points collected in May, 2014 and November, 2014. Finally, the threshold value of each crop was determined and the planting information was extracted according to the thresholds. Two precision validation methods, spatial distribution and areal statistics, were adopted. The results showed that the accuracies of wheat and cotton in area were high (96.8%, 95.5%), while the accuracy of maize in area is a little lower (85.1%). The overall spatial consistency was 86.9% according to spatial distribution cooperation. The result suggests that the method in this paper is effective and practicable. |
来源
|
自然资源学报
,2017,32(10):1808-1818 【核心库】
|
DOI
|
10.11849/zrzyxb.20160943
|
关键词
|
遥感
;
农作物种植信息提取
;
时序植被指数
;
MODIS
|
地址
|
中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3037 |
学科
|
农业基础科学 |
基金
|
国家科技支撑计划项目
;
国家自然科学基金
;
国家国际科技合作专项
|
文献收藏号
|
CSCD:6095237
|
参考文献 共
32
共2页
|
1.
玉苏普江·艾麦提. 基于多时相HJ卫星的渭干河-库车河绿洲主要农作物种植信息提取.
中国农业资源与区划,2014,35(5):38-43
|
CSCD被引
5
次
|
|
|
|
2.
吴炳方. 中国农情遥感速报系统.
遥感学报,2004,8(6):481-497
|
CSCD被引
48
次
|
|
|
|
3.
潘志强. 黄河三角洲农作物种植分区的遥感研究.
地理研究,2003,22(6):799-806
|
CSCD被引
11
次
|
|
|
|
4.
张荣群. 基于时序植被指数的县域作物遥感分类方法研究.
农业机械学报,2015,46(S1):246-252
|
CSCD被引
32
次
|
|
|
|
5.
Murthy C S. Classification of wheat crop with multi-temporal images: Performance of maximum likelihood and artificial neural networks.
International Journal of Remote Sensing,2003,24(23):4871-4890
|
CSCD被引
36
次
|
|
|
|
6.
许青云. 基于MODIS NDVI多年时序数据的农作物种植识别.
农业工程学报,2014,30(11):134-144
|
CSCD被引
68
次
|
|
|
|
7.
Wardlow B D. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains.
Remote Sensing of Environment,2007,108(3):290-310
|
CSCD被引
87
次
|
|
|
|
8.
王磊. NDVI在农作物监测中的研究与应用.
中国农业资源与区划,2013,34(4):43-50
|
CSCD被引
9
次
|
|
|
|
9.
Panigrahy S. Mapping of cropping system for the Indo-Gangetic plain using multidate SPOT NDVI-VGT data.
Journal of the Indian Society of Remote Sensing,2010,38(4):627-632
|
CSCD被引
3
次
|
|
|
|
10.
李杨. 基于SPOT/VGT NDVI的大区域农作物空间分布.
农业工程学报,2010,26(12):242-247
|
CSCD被引
6
次
|
|
|
|
11.
张健康. 基于多时相遥感影像的作物种植信息提取.
农业工程学报,2012,28(2):134-141
|
CSCD被引
35
次
|
|
|
|
12.
Hill M J. Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using AVHRR NDVI time series.
Remote Sensing of Environment,2003,84(3):367-384
|
CSCD被引
25
次
|
|
|
|
13.
Colditz R R. Land cover classification with coarse spatial resolution data to derive continuous and discrete maps for complex regions.
Remote Sensing of Environment,2011,115(12):3264-3275
|
CSCD被引
7
次
|
|
|
|
14.
苗翠翠. 基于NDVI时序数据的水稻种植面积遥感监测分析----以江苏省为例.
地球信息科学学报,2011,13(2):273-280
|
CSCD被引
18
次
|
|
|
|
15.
平跃鹏. 基于MODIS时间序列及物候特征的农作物分类.
自然资源学报,2016,31(3):503-513
|
CSCD被引
27
次
|
|
|
|
16.
张焕雪. 基于多时相环境星NDVI时间序列的农作物分类研究.
遥感技术与应用,2015,30(2):304-311
|
CSCD被引
29
次
|
|
|
|
17.
Evans J P. Classifying rangeland vegetation type and coverage using a Fourier component based similarity measure.
Remote Sensing of Environment,2006,105(1):1-8
|
CSCD被引
9
次
|
|
|
|
18.
管续栋. 基于DTW距离的时序相似性方法提取水稻遥感信息--以泰国为例.
资源科学,2014,36(2):267-272
|
CSCD被引
17
次
|
|
|
|
19.
秦元伟. 基于中高分辨率卫星遥感数据的县域冬小麦估产.
农业工程学报,2009,25(7):118-123
|
CSCD被引
17
次
|
|
|
|
20.
贾吉超. 黄河三角洲典型区域冬小麦播种面积变化与土壤盐分关系研究.
植物营养与肥料学报,2015,21(5):1200-1208
|
CSCD被引
2
次
|
|
|
|
|