中高应变率条件下TC18钛合金动态力学行为的实验研究
Experimental Research on Dynamic Mechanical Behavior of TC18 Titanium Alloy under Medium and High Strain Rates
查看参考文献22篇
文摘
|
应变和应变率是影响材料力学行为的两个重要因素,分离式霍普金森压杆(SHPB)技术是实现不同应变和应变率加载的有效途径之一。为研究室温下TC18钛合金的塑性变形和破坏行为,采用SHPB,通过调节子弹长度和速度实现对TC18钛合金圆柱试样不同应变和应变率的加载。实验得到了TC18钛合金在不同应变率下的真应力-真应变曲线和同一应变率不同应变下的真应力-真应变曲线,并分别分析了应变硬化和应变率强化效应对TC18钛合金的动态力学性能的影响。实验结果表明:TC18钛合金压缩试样破坏时断口与加载方向(轴线)之间的夹角约为45°,其压缩破坏形式为典型的剪切破坏,与应变和应变率相关;应变率越高,TC18钛合金的流动应力和屈服强度越高,故该材料具有明显的应变率强化效应;绝热剪切带是裂纹形成和试样发生宏观剪切破坏的先兆。 |
其他语种文摘
|
Strain and strain rate are two important factors that affect the mechanical behavior of materials,and the split Hopkinson pressure bar (SHPB) technique is one of the effective ways to realize different strain and strain rate loading conditions. To study the plastic deformation and fracture behavior of TC18 titanium alloy under dynamic loading (ranging from 300 to 3000s~(-1)),a series of dynamic compression tests on TC18 titanium alloy have been performed by means of SHPB technique at room temperature. The different strain and strain rate loading conditions are realized by changing the length and velocity of the striker. Macro true stress-true strain curves are obtained under different strain rate loading,so are the true stress-true strain curves under the same strain rate with different strain loading conditions. The effects of strain hardening and strain rate hardening on the dynamic mechanical properties of TC18 titanium alloy are discussed. Results indicate that the collapse of specimen occurs along a plane inclined at an angle of about 45° to the compression axis,namely,shear failure is the main failure mechanism for TC18 titanium alloy under compression loading at room temperature,and it is dependent on strain and strain rate; the higher the strain rate is,the larger the flow stress (or yield stress) of TC18 titanium alloy is,therefore,the material shows clearly evident strain rate hardening effect; and the analyses of microstructure and fracture morphology show that adiabatic shear bands are the precursor to the crack formation and fracture. |
来源
|
兵工学报
,2017,38(9):1723-1728 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2017.09.008
|
关键词
|
爆炸力学
;
钛合金
;
动态压缩
;
应变
;
应变率
;
霍普金森压杆
|
地址
|
1.
北京理工大学, 爆炸科学与技术国家重点实验室, 北京, 100081
2.
北京航空材料研究院, 北京, 100095
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
力学;金属学与金属工艺 |
基金
|
国家自然科学基金项目
;
北京理工大学爆炸科学与技术国家重点实验室开放课题项目
|
文献收藏号
|
CSCD:6083867
|
参考文献 共
22
共2页
|
1.
Boyer R R. An overview on the use of titanium in the aerospace industry.
Materials Science and Engineering: A,1996,213(1):103-114
|
CSCD被引
383
次
|
|
|
|
2.
Dai L. Basic mechanical behaviors and mechanics of shear banding in BMGs.
International Journal of Impact Engineering,2008,35(8):704-716
|
CSCD被引
31
次
|
|
|
|
3.
Pursche F. Correlation between dynamic material behavior and adiabatic shear phenomenon for quenched and tempered steels.
Engineering Transactions,2011,59(2):67-84
|
CSCD被引
2
次
|
|
|
|
4.
Xue Q. Self organization of shear bands in stainless steel.
Materials Science and Engineering: A,2004,384(1):35-46
|
CSCD被引
10
次
|
|
|
|
5.
Peirs J. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V.
International Journal of Impact Engineering,2010,37(6):703-714
|
CSCD被引
20
次
|
|
|
|
6.
Staker M R. The relation between adiabatic shear instability strain and material properties.
Acta Metallurgica,1981,29(4):683-689
|
CSCD被引
7
次
|
|
|
|
7.
Luo J. The correlation between the flow behavior and the microstructure evolution during hot working of TC18 alloy.
Materials Science and Engineering: A,2016,654:213-220
|
CSCD被引
9
次
|
|
|
|
8.
Liu L. Sliding wear behavior of laser-nitrided and thermal oxidation-treated Ti-5Al-5Mo-5V-1Cr-1Fe alloy fabricated by laser melting deposition.
Applied Physics A,2016,122(4):1-7
|
CSCD被引
2
次
|
|
|
|
9.
Nie X. Creep of Ti-5Al-5Mo-5V-1Fe-1Cr alloy with equiaxed and lamellar microstructures.
Materials Science and Engineering: A,2016,651:37-44
|
CSCD被引
9
次
|
|
|
|
10.
Liu C. Influence of continuous grain boundary α on ductility of laser melting deposited titanium alloys.
Materials Science and Engineering: A,2016,661:145-151
|
CSCD被引
5
次
|
|
|
|
11.
Chichili D R. The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling.
Acta Materialia,1998,46(3):1025-1043
|
CSCD被引
45
次
|
|
|
|
12.
Rittel D. Adiabatic shear failure and dynamic stored energy of cold work.
Physical Review Letters,2006,96(7):075502
|
CSCD被引
24
次
|
|
|
|
13.
Rittel D. Dynamic recrystallization as a potential cause for adiabatic shear failure.
Physical Review Letters,2008,101(16):165501
|
CSCD被引
28
次
|
|
|
|
14.
Rittel D. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys.
Mechanics of Materials,2008,40(8):629-635
|
CSCD被引
15
次
|
|
|
|
15.
徐媛. TC18钛合金绝热剪切带晶粒细化机制.
稀有金属材料与工程,2011,40(8):1454-1457
|
CSCD被引
8
次
|
|
|
|
16.
Zherebtsov S V. Microstructure evolution during warm working of Ti-5Al-5Mo-5V-1Cr-1Fe at 600 and 800℃.
Materials Science and Engineering: A,2013,563:168-176
|
CSCD被引
14
次
|
|
|
|
17.
Shi C. Effect of microstructures on fatigue property of TC18 titanium alloy with equal strength.
Procedia Engineering,2012,27:1209-1215
|
CSCD被引
6
次
|
|
|
|
18.
Wang B. Adiabatic shear localization in a near beta Ti-5Al-5Mo-5 V-1Cr-1Fe alloy.
Materials Science and Engineering: A,2015,639:526-533
|
CSCD被引
4
次
|
|
|
|
19.
Ran C. Dynamic shear deformation and failure of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy.
Materials Science and Engineering: A,2017,694:41-47
|
CSCD被引
4
次
|
|
|
|
20.
苗圃.
TC18钛合金和低合金超高强度钢绝热剪切力学行为研究,2008
|
CSCD被引
1
次
|
|
|
|
|