Response of linear and cyclic electron flux to moderate high temperature and high light stress in tomato
线性电子传递和环式电子传递对缓解番茄亚高温强光胁迫的响应
查看参考文献58篇
文摘
|
Objective: To evaluate the possible photoprotection mechanisms of cyclic and linear electron flux (CEF and LEF) under specific high temperature and high light (HH) stress. Methods: Six-leaf-stage tomato seedlings (“Liaoyuanduoli”, n=160) were divided into four parts: Part 1, served as control under 25 ℃, 500 μmol/(m~2·s); Part 2, spayed with distilled water (H_2O) under 35 ℃, 1000 μmol/(m~2·s) (HH); Part 3, spayed with 100 μmol/L diuron (DCMU, CEF inhibitor) under HH; Part 4, spayed with 60 μmol/L methyl viologen (MV, LEF inhibitor) under HH. Energy conversion, photosystem I (PSI), and PSII activity, and trans-thylakoid membrane proton motive force were monitored during the treatment of 5 d and of the recovering 10 d. Results: HH decreased photochemical reaction dissipation (P) and the maximal photochemical efficiency of PSII (F_v/F_m), and increased the excitation energy distribution coefficient of PSII (β); DCMU and MV aggravated the partition imbalance of the excitation energy (γ) and the photoinhibition degree. With prolonged DCMU treatment time, electron transport rate and quantum efficiency of PSI (ETR_I and Y_I) significantly decreased whereas acceptor and donor side limitation of PSI (Y_(NA) and Y_(ND)) increased. MV led to a significant decline and accession of yield of regulated and non-regulated energy YNPQ and YNO, respectively. Membrane integrity and ATPase activity were reduced by HH stress, and DCMU and MV enhanced inhibitory actions. Conclusions: The protective effects of CEF and LEF were mediated to a certain degree by meliorations in energy absorption and distribution as well as by maintenance of thylakoid membrane integrity and ATPase activity. |
其他语种文摘
|
目的:探讨特定高温和强光逆境下番茄叶片中的环式电子传递(CEF)和线性电子传递(LEF)的光保护机制。创新点:通过引入电子抑制剂的方法系统分析了CEF和LEF对亚高温强光胁迫的响应。方法:将品种为“辽园多丽”的番茄幼苗(n=160)平均分成四组(表1):组1,于常温常光照25 ℃, 500 μmol/(m~2·s)条件下培养并作为对照;组2,叶片喷施蒸馏水并在亚高温强光35 ℃, 1000 μmol/(m~2·s)(HH)条件下培养;组3,HH条件下叶片喷施100 μmol/L敌草隆(DCMU,CEF抑制剂);组4,HH条件下叶片喷施60 μmol/L甲基紫精(MV,LEF抑制剂)。在处理5 d及恢复10 d期间,分别测定番茄幼苗叶片的光能吸收、激发能分配、光系统活性、类囊体膜完整性和ATP酶活性等指标。结论:CEF和LEF通过一定程度上改善叶片光能吸收及激发能分配,并且维持类囊体膜较高完整性和ATP酶活性,从而维持光系统活性并减少光抑制和光破坏程度。 |
来源
|
Journal of Zhejiang University. Science B
, Biomedicine & Biotechnology,2017,18(7):635-648 【核心库】
|
DOI
|
10.1631/jzus.b1600286
|
关键词
|
Photoinhibition
;
Photoprotection
;
Thylakoid membrane
;
Tomato
|
地址
|
College of Horticulture, Shenyang Agricultural University, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province;;Collaborative Innovation Center of Protected Vegetable Surrounds Bohai Gulf Region, Shenyang, 110866
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1673-1581 |
学科
|
园艺 |
基金
|
Project supported by the China Agriculture Research System
;
国家自然科学基金
;
国家科技攻关计划项目
|
文献收藏号
|
CSCD:6034514
|
参考文献 共
58
共3页
|
1.
Agrawal D. Cyclic electron flow plays an important role in protection of spinach leaves under high temperature stress.
Russ. J. Plant Physiol,2016,63(2):210-215
|
CSCD被引
2
次
|
|
|
|
2.
Apostolova E L. Relationship between the organization of the PSII super complex and the functions of the photosynthetic apparatus.
J. Photochem. Photobiol. B,2006,83(2):114-122
|
CSCD被引
3
次
|
|
|
|
3.
Bailey S. Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition.
Planta,2004,218(5):793-802
|
CSCD被引
6
次
|
|
|
|
4.
Bailey S. Alternative photosynthetic electron flow to oxygen in marine Synechococcus.
Biochim. Biophys. Acta,2008,1777(3):269-276
|
CSCD被引
1
次
|
|
|
|
5.
Bailleul B. Electrochromism: a useful probe to study algal photosynthesis.
Photosynth. Res,2010,106(1/2):179-189
|
CSCD被引
5
次
|
|
|
|
6.
Bilger W. Chlorophyll luminescence as an indicator of stress-induced damage to the photosynthetic apparatus. Effects of heat-stress in isolated chloroplasts.
Photosynth. Res,1990,25(3):161-171
|
CSCD被引
3
次
|
|
|
|
7.
Bilger W. Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves.
Plant Physiol,1989,91(2):542-551
|
CSCD被引
9
次
|
|
|
|
8.
Bose S. Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges.
Prog. Polym. Sci,2011,36(6):813-843
|
CSCD被引
55
次
|
|
|
|
9.
Braun G. Regulation of the imbalance in light excitation between photosystem II and photosystem I by cations and by the energized state of the thylakoid membrane.
Biochim. Biophys. Acta,1990,1017(1):79-90
|
CSCD被引
39
次
|
|
|
|
10.
Brestic M. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines.
Photosynth. Res,2016,62(3):281-283
|
CSCD被引
1
次
|
|
|
|
11.
Camejo D. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility.
J. Plant Physiol,2005,162(3):281-289
|
CSCD被引
46
次
|
|
|
|
12.
Chen L. Protecting effect of phosphorylation on oxidative damage of D1 protein by down-regulating the production of superoxide anion in photosystem II membranes under high light.
Photosynth. Res,2012,112(2):141-148
|
CSCD被引
3
次
|
|
|
|
13.
Cruz J A. Contribution of electric field (Dψ) to steady-state transthylakoid proton motive force (PMF) in vitro and in vivo. control of parsing into Dψ and DpH by ionic strength.
Biochemistry,2001,40(5):1226-1237
|
CSCD被引
6
次
|
|
|
|
14.
de Filippis L F. Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena.
J. Plant Physiol,1993,142(2):167-172
|
CSCD被引
3
次
|
|
|
|
15.
de Filippis L F. The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena.
Arch. Microbiol,1981,128(4):407-411
|
CSCD被引
1
次
|
|
|
|
16.
de la Rosa-Manzano E. Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatan Peninsula, Mexico.
Planta,2015,242(6):1425-1438
|
CSCD被引
2
次
|
|
|
|
17.
Deng C. Toxic effects of mercury on PSI and PSII activities, membrane potential and transthylakoid proton gradient in Microsorium pteropus.
J. Photochem. Photobiol. B,2013,127:1-7
|
CSCD被引
9
次
|
|
|
|
18.
Dzbek J. Control over the contribution of the mitochondrial membrane potential(Δψ) and proton gradient (ΔpH) to the proton motive force (Δp). In silico studies.
J. Biol. Chem,2008,283(48):33232-33239
|
CSCD被引
3
次
|
|
|
|
19.
Foyer C H. Photosynthetic control of electron transport and the regulation of gene expression.
J. Exp. Bot,2012,63(4):1637-1641
|
CSCD被引
10
次
|
|
|
|
20.
Gao S. The physiological links of the increased photosystem II activity in moderately desiccated Porphyra haitanensis (Bangiales, Rhodophyta) to the cyclic electron flow during desiccation and rehydration.
Photosynth. Res,2013,116(1):45-54
|
CSCD被引
7
次
|
|
|
|
|