三峡大坝下游水位变化与河道形态调整关系研究
The relationship between water level change and river channel geometry adjustment in the downstream of the Three Gorges Dam (TGD)
查看参考文献37篇
文摘
|
三峡水库蓄水利用已有13年,对坝下游洪、枯水位和河道形态调整的影响已初步显现,通过对1955-2016年长江中游水位、河道地形等资料的分析,结果表明:① 坝下游各水文站同流量枯水位下降、洪水位变化不大,最低水位上升,最高水位下降趋势;② 2002年10月-2015年10月枯水河槽冲刷量占平滩河槽冲刷量的95.5%,冲淤分布由蓄水前“冲槽淤滩”转为“滩槽均冲”,不同蓄水阶段存在差异;③ 河槽冲刷过程中,上荆江及以上河段枯水位下降趋势趋缓,下荆江及以下河段下降速率增加,应采取防控措施遏制河道水位下降趋势;④ 枯水河槽冲刷是长江中下游航道水深提升的基础,枯水位降幅小于深槽下切深度,在河道和航道整治工程综合作用下航道尺度提升,提前5年实现了2020年航道尺度规划目标;⑤ 平滩水位以上河槽形态调整不大,在河床粗化、岸滩植被、人类活动等综合作用下河道综合阻力增加,出现了中洪水流量—高水位现象,应引起足够重视。三峡水库汛期调蓄作用可有效提升中下游洪水防御能力,但不排除遭遇支流洪水叠加效应,中下游洪水压力仍然较大。 |
其他语种文摘
|
In this study, data measured from 1955-2016 was analyzed to study the relationship between the water level and river channel geometry adjustment in the downstream of the Three Gorges Dam (TGD) after the impoundment of the dam. The results highlighted the following facts: (1) for the same flow, the drought water level decreased, however, flood water level changed little. The lowest water level increased, while the highest water level decreased at the hydrologic stations in the downstream of the dam; (2) the distribution of erosion and deposition along the river channel changed from "erosion at channels and deposition at bankfulls" to "erosion at both channels and bankfulls"; the ratio of low water channel erosion to bankfull channel erosion was 95.5% from October 2002 to October 2015, with variations in different impoundment stages; (3) the drought water level decrease slowed down during the channel erosion in the Upper Jingjiang River and the reaches ahead but sped up in the Lower Jingjiang River and the reaches behind; concrete measures should be taken to prevent the decrease in the channel water level; (4) erosion was the basis for channel dimension upscaling in the middle reaches of the Yangtze River; the drought water level decrease was smaller than the thalweg decline; both channel water depth and width increased under the combined effects of the channel and waterway regulations; and (5) the geometry of the channels above the bankfulls did not change much; however, the comprehensive channel resistance increased under the combined effects of the river bed coarsening, bench vegetation, and human activities; as a result, the flood water level increased markedly and moderate flood to high water level phenomena occurred, which should be considered. The Three Gorges Reservoir effectively enhances the flood defense capacity of the middle and lower reaches of the Yangtze River; however, the superposition effect of tributary floods cannot be ruled out. |
来源
|
地理学报
,2017,72(5):776-789 【核心库】
|
DOI
|
10.11821/dlxb201705002
|
关键词
|
枯水位
;
洪水位
;
河床调整
;
成因分析
;
三峡大坝
;
长江中下游
|
地址
|
1.
交通运输部天津水运工程科学研究所, 工程泥沙交通运输行业重点实验室;;水资源与水电工程科学国家重点实验室, 天津, 300456
2.
交通运输部天津水运工程科学研究所, 工程泥沙交通运输行业重点实验室, 天津, 300456
3.
武汉大学, 水资源与水电工程科学国家重点实验室, 武汉, 430072
4.
西北农林科技大学水土保持研究所, 杨凌, 712100
5.
湖北省水利水电规划勘测设计院, 武汉, 430064
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
水利工程 |
基金
|
中央级公益性科研院所基本科研业务专项基金
;
西北农林科技大学博士科研启动基金
;
国家重点研发计划
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:5989326
|
参考文献 共
37
共2页
|
1.
Zheng Shouren. Reflections on the Three Gorges Project since its operation.
Engineering,2016(2):389-397
|
CSCD被引
15
次
|
|
|
|
2.
Chen Zhongyuan. Implications of flow control by the Three Gorges Dam on sediment and channel dynamics of the Middle Yangtze(Changjiang)River,China.
Geology,2010,38(11):1043-1046
|
CSCD被引
18
次
|
|
|
|
3.
Yuan Weihao. Assessing the potential for change in the middle Yangtze River channel following impoundment of the Three Gorges Dam.
Geomorphology,2012,147/148(8):27-34
|
CSCD被引
29
次
|
|
|
|
4.
Dai Zhijun. Impacts of large dams on downstream fluvial sedimentation:An example of the Three Gorges Dam(TGD)on the Changjiang(Yangtze River).
Journal of Hydrology,2013,480(4):10-18
|
CSCD被引
56
次
|
|
|
|
5.
Dai S B. Sediment load change in the Yangtze River(Changjiang):A review.
Geomorphology,2014,215(12):60-73
|
CSCD被引
16
次
|
|
|
|
6.
许全喜. 三峡工程蓄水运用后长江中游河道演变初步研究.
泥沙研究,2011(2):38-46
|
CSCD被引
26
次
|
|
|
|
7.
许全喜. 三峡水库蓄水以来水库淤积和坝下游冲刷研究.
人民长江,2012,43(7):1-6
|
CSCD被引
19
次
|
|
|
|
8.
韩剑桥. 三峡水库蓄水后荆江沙质河段冲淤分布特征及成因.
水利学报,2014,45(3):277-285,286
|
CSCD被引
30
次
|
|
|
|
9.
许全喜. 长江中下游水沙与河床冲淤变化特征研究.
人民长江,2013,44(23):16-21
|
CSCD被引
13
次
|
|
|
|
10.
孙昭华. 三峡近坝段枯水位降幅的时空分异性及成因.
应用基础与工程科学学报,2015,23(4):694-704
|
CSCD被引
9
次
|
|
|
|
11.
陆永军. 三峡工程对葛洲坝枢纽下游近坝段水位与航道影响研究.
中国工程科学,2002,4(10):67-72
|
CSCD被引
9
次
|
|
|
|
12.
Fang Hongwei. Flood management selections for the Yangtze River midstream after the Three Gorges Project operation.
Journal of Hydrology,2012,432/433(8):1-11
|
CSCD被引
21
次
|
|
|
|
13.
Bormann Helge. Hydrological signatures of flood trends on German rivers:Flood frequencies,flood heights and specific stages.
Journal of Hydrology,2011,404(1/2):50-66
|
CSCD被引
11
次
|
|
|
|
14.
姜加虎. 三峡工程对其下游长江水位影响研究.
水利学报,1997(8):40-44
|
CSCD被引
3
次
|
|
|
|
15.
Li Yitian. Channel degradation downstream from the Three Gorges Project and its impacts on flood level.
Journal of Hydraulic Engineering,2009,135(9):718-728
|
CSCD被引
13
次
|
|
|
|
16.
张曼. 长江中游防洪问题与对策.
水资源保护,2016,32(4):1-10
|
CSCD被引
14
次
|
|
|
|
17.
Mei Xuefei. Linking Three Gorges Dam and downstream hydrological regimes along the Yangtze River,China.
Earth and Space Science,2015,2(4):94-106
|
CSCD被引
13
次
|
|
|
|
18.
Moshe L B. Incision of alluvial channels in response to a continuous base level fall:Field characterization,modeling,and validation along the Dead Sea.
Geomorphology,2008,93(3/4):524-536
|
CSCD被引
5
次
|
|
|
|
19.
Greene S L. Coupling legacy geomorphic surface facies to riparian vegetation:Assessing red cedar invasion along the Missouri River downstream of Gavins Point dam,South Dakota.
Geomorphology,2014,204(1):277-286
|
CSCD被引
5
次
|
|
|
|
20.
Yang S L. Decline of Yangtze River water and sediment discharge:Impact from natural and anthropogenic changes.
Scientific Reports,2015(5):12581
|
CSCD被引
2
次
|
|
|
|
|