双波对撞模态下的液态燃料旋转爆轰发动机推力测试研究
Thrust Measurement of Liquid-fueled Rotating Detonation Engine under Two-wave Collision Mode
查看参考文献23篇
文摘
|
在环形阵列式连续旋转爆轰发动机上,以汽油/富氧空气为工质,分析了双波对撞模态下爆轰波自持的传播特征、时域频域特征和爆轰波高度,测量了发动机模型在双波对撞模态下的一维推力。试验结果表明:在富氧空气(34.3%O_2和65.7% N_2)流量为945.3 g/s、汽油流量为84.3 g/s、当量比为0.82的工况下,爆轰波平均传播频率为2.174 kHz,平均传播速度为1 051 m/s,爆轰波高度在55~70 mm之间,有效推力为607.3 N,单位面积推力8.587×10~4 N/m~2,燃料比冲为735.1 s. 推力曲线表明:双波对撞模态下发动机推力波动较大,推力围绕推力平均值振荡,稳定工作阶段发动机振动频率与爆轰波传播频率基本一致。 |
其他语种文摘
|
The ring-shaped arrangement continuous rotating detonation engine, in which the mixture of gasoline/oxygen-enriched air is injected, is test. The propagation characteristics, time-domain characteristics, frequency-domain characteristics and detonation height of self-sustained detonation wave under two-wave collision mode are analyzed in detail. One-dimensional thrust of the engine model under two-wave collision mode is measured. The experimental results show that the detonation has an average frequency of 2.174 kHz and an average velocity of 1 051 m/s, the detonation wave height is between 55 and 70 mm, the effective thrust is 607.3 N, the thrust per unit area is 8.587×10~4 N/m~2, and the fuel specific impulse is 735.1 s under the operating conditions of 0.82 equivalence ratio, 945.3 g/s oxygen-enriched air (34.3%O_2 and 65.7% N_2) and 84.3 g/s gasoline. It shows that the engine thrust under two-wave collision mode fluctuates obviously, the thrust oscillates around the average thrust, and the vibration frequency of engine and the propagation frequency of detonation wave are basically identical at the stable phase in the thrust curve. |
来源
|
兵工学报
,2017,38(4):679-689 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2017.04.008
|
关键词
|
兵器科学与技术
;
连续旋转爆轰发动机
;
汽油/富氧空气混合物
;
双波对撞模态
;
时频分析
;
推力
;
比冲
|
地址
|
南京理工大学, 瞬态物理国家重点实验室, 江苏, 南京, 210094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
航天(宇宙航行) |
基金
|
国家自然科学基金项目
;
国防预研项目
;
中央高校基本科研业务费专项资金
|
文献收藏号
|
CSCD:5970905
|
参考文献 共
23
共2页
|
1.
王建平. 连续旋转爆轰发动机的研究进展.
实验流体力学,2015,29(4):12-25
|
CSCD被引
6
次
|
|
|
|
2.
Daniau E. Design of a continuous detonation wave engine for space application.
42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2006
|
CSCD被引
2
次
|
|
|
|
3.
Zheng Q. Experimental research on the propagation process of continuous rotating detonation wave.
Defence Technology,2013,9(4):201-207
|
CSCD被引
16
次
|
|
|
|
4.
Bykovskii F A. Continuous spin de-tonation of fuel-air mixtures.
Combustion, Explosion, and Shock Waves,2006,42(4):463-471
|
CSCD被引
47
次
|
|
|
|
5.
Bykovskii F A. Continuous spin detonation of a hydrogen-air mixture with addition of air into the products and the mixing region.
Combustion, Explosion, and Shock Waves,2010,46(1):52-59
|
CSCD被引
6
次
|
|
|
|
6.
Bykovskii F A. Reactive thrust generated by continuous detonation in the air ejection mode.
Combustion, Explosion, and Shock Waves,2013,49(2):188-195
|
CSCD被引
10
次
|
|
|
|
7.
Bykovskii F A. Effect of combustor geometry on continuous spin detonation in syngas-air mixtures.
Combustion, Explosion, and Shock Waves,2015,51(6):688-699
|
CSCD被引
9
次
|
|
|
|
8.
Kindracki J. Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures.
Shock Waves,2011,21(2):75-84
|
CSCD被引
63
次
|
|
|
|
9.
Kindracki J. Experimental research on rotating detonation in liquid fuel-gaseous air mixtures.
Aerospace Science and Technology,2015,43:445-453
|
CSCD被引
41
次
|
|
|
|
10.
郑权. 当量比对液体燃料旋转爆轰发动机爆轰影响实验研究.
推进技术,2015,36(6):947-952
|
CSCD被引
31
次
|
|
|
|
11.
李宝星. 连续旋转爆轰发动机气液两相爆轰波传播特性二维数值研究.
固体火箭技术,2015,38(5):646-652
|
CSCD被引
11
次
|
|
|
|
12.
Wang J P. Rotating detonation engine injection velocity limit and nozzle effects on its propulsion performance.
Proceedings of the 6th International Conference on Computational Fluid Dynamics,2011:789-795
|
CSCD被引
1
次
|
|
|
|
13.
Yao S B. Numerical investigation of spontaneous formation of multiple detonation wave fronts in rotating detonation engine.
Combustion Science and Technology,2015,187(12):1867-1878
|
CSCD被引
10
次
|
|
|
|
14.
刘世杰.
连续旋转爆震波结构、传播模态及自持机理研究,2012
|
CSCD被引
31
次
|
|
|
|
15.
刘世杰. 连续旋转爆震波传播过程研究(Ⅱ):双波对撞传播模式.
推进技术,2014,35(2):269-275
|
CSCD被引
26
次
|
|
|
|
16.
Schwer D A. Numerical investigation of rotating detonation engines.
46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,2010
|
CSCD被引
1
次
|
|
|
|
17.
Schwer D A. Numerical study of the effects of engine size on rotating detonation engines.
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,2011
|
CSCD被引
4
次
|
|
|
|
18.
Shao Y T. Three dimensional numerical simulation of continuous rotating detonation engine flowfields.
Journal of Aerospace Power,2010,25(8):1717-1722
|
CSCD被引
2
次
|
|
|
|
19.
Braun E M. Airbreathing rotating detonation wave engine cycle analysis.
Aerospace Science and Technology,2013,27(1):201-208
|
CSCD被引
24
次
|
|
|
|
20.
Suchocki J A. Rotating detonation engine operation.
50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,2012
|
CSCD被引
2
次
|
|
|
|
|