A large eddy simulation of flows around an underwater vehicle model using an immersed boundary method
查看参考文献19篇
文摘
|
A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the Reynolds number based on the hull length is 1.0x10~5. An immersed boundary method based on the moving-least-squares reconstruction is used to handle the complex geometric boundaries. The adaptive mesh refinement is utilized to resolve the flows near the hull. The parallel scalabilities of the flow solver are tested on meshes with the number of cells varying from 50 million to 3.2 billion. The parallel solver reaches nearly linear scalability for the flows around the underwater vehicle model. The present simulation captures the essential features of the vortex structures near the hull and in the wake. Both of the time-averaged pressure coefficients and streamwise velocity profiles obtained from the LES are consistent with the characteristics of the flows pass an appended axisymmetric body. The code efficiency and its correct predictions on flow features allow us to perform the full-scale simulations on tens of thousands of cores with billions of grid points for higher-Reynolds-number flows around the underwater vehicles. |
来源
|
Theoretical and Applied Mechanics Letters
,2016,6(6):302-305 【核心库】
|
DOI
|
10.1016/j.taml.2016.11.004
|
关键词
|
Underwater vehicle
;
SUBOFF
;
Immersed boundary method
;
Large eddy simulation
;
Adaptive mesh refinement
|
地址
|
Institute of Mechanics, Chinese Academy of Sciences, The State Key Laboratory of Nonlinear Mechanics, Beijing, 100190
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
2095-0349 |
学科
|
水路运输 |
基金
|
国家自然科学基金
;
support from the Strategic Priority Research Program
;
the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences
;
the National Basic Research Program of China (973 Program: Nonlinear science)
|
文献收藏号
|
CSCD:5911570
|
参考文献 共
19
共1页
|
1.
Bandyopadhyay P R. Trends in biorobotic autonomous undersea vehicles.
IEEE J. Ocean. Eng,2005,30:109-139
|
CSCD被引
23
次
|
|
|
|
2.
Wu X C. An effective CFD approach for marine-vehicle maneuvering simulation based on the hybrid reference frames method.
Ocean Eng,2015,109:83-92
|
CSCD被引
4
次
|
|
|
|
3.
Yang Y. Evolution of vortex-surface fields in viscous Taylor-Green and Kida-Pelz flows.
J. Fluid Mech,2011,685:146-164
|
CSCD被引
11
次
|
|
|
|
4.
Zhao Y M. Vortex reconnection in the late transition in channel flow.
J. Fluid Mech,2016,802:R4
|
CSCD被引
6
次
|
|
|
|
5.
Yang J M. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries.
J. Comput. Phys,2006,215:12-40
|
CSCD被引
2
次
|
|
|
|
6.
Yang X L. Large-eddy simulation of flows past a flapping airfoil using immersed boundary method.
Sci. China Phys. Mech. Astron,2010,53:1101-1108
|
CSCD被引
2
次
|
|
|
|
7.
Yan C. A ghost-cell immersed boundary method for large eddy simulation of flows in complex geometries.
Int. J. Comput. Fluid Dyn,2015,29:1-14
|
CSCD被引
1
次
|
|
|
|
8.
Peskin C S. The immersed boundary method.
Acta Numer,2001,11:479-517
|
CSCD被引
114
次
|
|
|
|
9.
Mittal R. Immersed boundary methods.
Annu. Rev. Fluid Mech,2005,37:239-261
|
CSCD被引
109
次
|
|
|
|
10.
Sotiropoulos F. Immersed boundary methods for simulating fluid-structure interaction.
Prog. Aerosp. Sci,2014,65:1-21
|
CSCD被引
28
次
|
|
|
|
11.
Posa A. A numerical investigation of the wake of an axisymmetric body with appendages.
J. Fluid Mech,2016,792:470-498
|
CSCD被引
11
次
|
|
|
|
12.
Groves N C.
Geometric Characteristics of the DARPA SUBOFF Models, Tech. Rep. No. DTRC/SHD-1298-01,1989
|
CSCD被引
1
次
|
|
|
|
13.
Nicoud F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor.
Flow Turbul. Combust,1999,62:183-200
|
CSCD被引
140
次
|
|
|
|
14.
Vanella M. A direct-forcing embedded-boundary method with adaptive mesh refinement for fluid-structure interaction problems.
J. Comput. Phys,2010,229:6427-6449
|
CSCD被引
3
次
|
|
|
|
15.
Vanella M. A moving-least-squares reconstruction for embedded-boundary formulations.
J. Comput. Phys,2009,228:6617-6628
|
CSCD被引
10
次
|
|
|
|
16.
Jimenez J M. The intermediate wake of a body of revolution at high Reynolds numbers.
J. Fluid Mech,2010,659:516-539
|
CSCD被引
12
次
|
|
|
|
17.
Jimenez J M. The effects of fins on the intermediate wake of a submarine model.
J. Fluids Eng,2010,132:031102
|
CSCD被引
6
次
|
|
|
|
18.
Johansson P B V. Equilibrium similarity, effects of initial conditions and local Reynolds number on the axisymmetric wake.
Phys. Fluids,2003,15:603-617
|
CSCD被引
1
次
|
|
|
|
19.
Pope S B.
Turbulent Flows, (Chapter 5),2010
|
CSCD被引
1
次
|
|
|
|
|