TC18钛合金SHCCT曲线的测定
SHCCT curve measurement of TC18 titanium alloy
查看参考文献16篇
文摘
|
采用金相法测量了TC18钛合金相变温度,利用L78 RITA型快速加热热膨胀仪,测定了不同焊接冷却速率下TC18钛合金的膨胀量曲线,结合金相分析和硬度测试,得到了不同冷却速率下试样的显微组织和硬度,测绘了TC18钛合金的焊接条件下的CCT曲线。结果表明:TC18钛合金的相变温度为(855 ±5)℃;随着冷却速率增加,析出α相的数量逐渐减少,且由片层状向团簇状结构转变。当冷却速率低于0.8 ℃/s时,α相以片层状形貌析出,当冷却速率高于0.8 ℃/s时,α相以团簇状析出,且析出的片层或团簇状颗粒均随冷却速率的增加而细化;当冷却速率超过10.0 ℃/s后,亚稳β相的转变受到抑制,基本上被完全保留下来。 |
其他语种文摘
|
Phase change temperature of TC18 titanium alloy was measured by means of metallographic observation. The expansion curves of TC18 titanium alloy at different cooling rates were tested by using a rapid thermal expansion instrument (Type L78 RITA). Microstructure and properties of samples at different cooling rates were investigated by means of optical microscopy and microhardness test. Based on above results, the simulated HAZ continuous cooling transformation (SHCCT) curve of TC18 titanium alloy was obtained. The results show that the phase change temperature of TC18 titanium alloy is (855 ±5) ℃. The amount of precipitated α phase is decreased with increasing of cooling rate. Moreover, the structure of precipitated α phase is transformed from lamellar to cluster, when the critical cooling rate is about 0.8 °C/s. The precipitated lamellar or cluster a phase can be refined with the increase of cooling rate. The transformation of metastable β phase is inhibited and can be completely preserved when the cooling rate is more than 10.0 °C/s. |
来源
|
金属热处理
,2016,41(12):81-85 【核心库】
|
DOI
|
10.13251/j.issn.0254-6051.2016.12.017
|
关键词
|
TC18钛合金
;
热模拟
;
金相-硬度法
;
膨胀法
;
SHCCT曲线
|
地址
|
1.
中航工业沈阳飞机工业(集团)有限公司, 辽宁, 沈阳, 110034
2.
中国科学院金属研究所, 沈阳材料科学国家(联合)实验室, 辽宁, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-6051 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金委员会-上海宝钢集团公司“钢铁联合研究基金”
|
文献收藏号
|
CSCD:5877175
|
参考文献 共
16
共1页
|
1.
黄伯云.
中国材料工程大典第4卷有色金属材料工程,2006
|
CSCD被引
1
次
|
|
|
|
2.
沙爱学. 航空用高强度结构钛合金的研究及应用.
稀有金属,2004,28(1):239-242
|
CSCD被引
36
次
|
|
|
|
3.
李世键. TC4钛合金框退火过程畸变与控制模拟仿真.
金属热处理,2016,41(4):190-192
|
CSCD被引
3
次
|
|
|
|
4.
张文钺.
焊接冶金学(基本原理),1999
|
CSCD被引
16
次
|
|
|
|
5.
麻相渭. SS400钢SH-CCT曲线测定及组织性能分析.
金属热处理,2015,40(9):59-63
|
CSCD被引
1
次
|
|
|
|
6.
赵勇桃. Q390钢焊接CCT曲线的测定.
焊接学报,2012,33(7):57-60
|
CSCD被引
2
次
|
|
|
|
7.
Zheng S H. Influence of different cooling rates on the microstructure of the HAZ and Welding CCT diagram of CLAM steel.
Fusion Engineering and Design,2011,86(9/11):2616-2619
|
CSCD被引
2
次
|
|
|
|
8.
Huang Y M. Measurement and analysis of SHCCT diagram for CLAM steel.
Journal of Nuclear Materials,2013,432(1/3):460-465
|
CSCD被引
2
次
|
|
|
|
9.
Leblond J B. A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size.
Acta Metallurgica,1984,32(1):137-146
|
CSCD被引
12
次
|
|
|
|
10.
Tsirkas S A. Numerical simulation of the laser welding process in butt-joint specimens.
Journal of Materials Processing Technology,2003,134(1):59-69
|
CSCD被引
24
次
|
|
|
|
11.
Shawn M K.
Thermal and microstructure modeling of metal deposition processes with application to Ti-6A1-4V,2004
|
CSCD被引
1
次
|
|
|
|
12.
方波. Ti-55钛合金连续冷却转变曲线的测绘及显微组织的演变.
中国有色金属学报,2010,20(s1):32-35
|
CSCD被引
1
次
|
|
|
|
13.
Angelier C. Building a continuous cooling transformation diagram of β-CEZ alloy by metallography and electrical resistivity measurements.
Metallurgical and Materials Transactions A,1997,28(12):2467-2475
|
CSCD被引
6
次
|
|
|
|
14.
Mishra R S. On the influence of cooling rate in β solution treatment for a Ti-25A1-11 Nb alloy.
Scripta Metallurgica Et Materialia,1990,24(8):1477-1482
|
CSCD被引
2
次
|
|
|
|
15.
Wang B Z. Study of the phase diagram and continuous cooling transformation of 12% Cr ultra-super-critical rotor steel.
Material Characterization,2008,59(8):1133-1136
|
CSCD被引
4
次
|
|
|
|
16.
Xu G. A new method for accurate plotting continuous cooling transformation curves.
Materials Letters,2008,62(24):3978-3980
|
CSCD被引
5
次
|
|
|
|
|