合肥地区平流层气溶胶地基激光雷达与SAGE卫星探测比较
Comparison of stratospheric aerosol derived from ground LiDAR and SAGE in Hefei
查看参考文献27篇
文摘
|
为了解中国上空SAGE反演的平流层气溶胶数据质量,将合肥地区地基激光雷达观测10年(1996年— 2005年)的气溶胶数据与SAGE资料进行比较。通过较为系统全面的比较分析,得到如下结果:(1)10—30 km内 SAGE与LiDAR分析的气溶胶变化趋势较为一致,出现峰值和低值的位置也较为接近;(2)SAGE结果普遍比 LiDAR测量的偏小,对应的平流层气溶胶AOD差异显著,定量表现为:激光雷达获取的平流层气溶胶AOD基本约为0.004,SAGE反演的平流层气溶胶AOD基本约为0.002,只有前者的一半;(3)两者分析的20—35 km气溶胶季节分布差异较小,再次表明平流层气溶胶比较稳定。 |
其他语种文摘
|
This study aims to assess the quality of retrieved stratospheric aerosol data from the Stratospheric Aerosol and Gas Experiment(SAGE) in China. Data from 10-year observation of ground LiDAR in Hefei, China were comparedwith the corresponding SAGE aerosol dataset. This work focused on the 20—40 km aerosol extinction profile and AOD to elucidate stratospheric aerosol. Two methods were used to form matching pair for LiDAR and SAGE because of the limited observation samples in Hefei for SAGE limb detection. The first method is singe profile matching, which matches the observed aerosol profile within the same day with the temporal and 10° spatialdistancetoobtain approximately 24 matching pairs. The second method is multi-profile matching, which matches the aerosol profiles with the 10° spatial distance within a certain period, such as per season; subsequently, differences in the averaged profiles were compared among the four seasons. Comprehensive comparisons show that aerosol variation trends are consistent when derived from LiDAR and SAGE in 10—30km. The positions of peaks and valleys of the aerosol extinction profile are similar. In addition, aerosol seasonal differences in 20—35km from LiDAR and SAGE, respectively, are relatively smaller, which reflects the stability of stratospheric aerosol. However, the detailed value distribution shows that the SAGE results are generally smaller than those of LiDAR, and their corresponding AODs differ within 20—40km. The quantitative results show that the aerosol AOD within 20—40 km as observed by LiDAR is approximately 0.004; the corresponding results retrieved by SAGE is approximately 0.002, which is only half of the former. The evident differences in LiDAR and SAGE results for stratospheric aerosol AOD and their extinction profiles are mainly attributed to their different measurement and retrieval methods. Furthermore, large temporal and spatial scales are required to match the LiDAR and SAGE observations, which may cause uncertainties in the compared results because of different detection technologies employed. Moreover, the SAGE aerosol profile was retrieved from Mie scattering theory. By contrast, the LiDAR aerosol profile was calculated using Fernald method, which requires the adjustment of several important constants, such as back scattering ratio and reference height. Artificial choices for these constants increase the possibility of errors for LiDAR aerosol retrieval. Therefore, different and complex retrieval methods can increase bias in the compared results. Comparisons of aerosol within 20—40 km from SAGE and LiDAR in Hefei, China show that variation in stratospheric aerosol is generally reasonable as reflected by SAGE retrieval. The quantitative AOD value is systemically lower than half of that detected by ground LiDAR. |
来源
|
遥感学报
,2016,20(4):540-548 【核心库】
|
DOI
|
10.11834/jrs.20165130
|
关键词
|
平流层气溶胶
;
SAGE
;
地基激光雷达
;
消光系数
;
光学厚度
|
地址
|
1.
中国科学院大气物理研究所, 中国科学院中层大气和全球环境探测重点实验室, 北京, 100029
2.
中国科学院安徽光学精密机械研究所, 安徽, 合肥, 230031
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-4619 |
学科
|
自动化技术、计算机技术 |
基金
|
国家重点基础研究发展计划(973计划)
;
国家自然科学基金项目
;
北京市自然科学基金
|
文献收藏号
|
CSCD:5750613
|
参考文献 共
27
共2页
|
1.
Antuna J C. Lidar validation of SAGE Ⅱ aerosol measurements after the 1991 Mount Pinatubo eruption.
Journal of Geophysical Research,2002,107(D14):ACL 3-1-ACL 3-11
|
CSCD被引
1
次
|
|
|
|
2.
Bingen C. A global climatology of stratospheric aerosol size distribution parameters derived from SAGE Ⅱ data over the period 1984-2000: 1. Methodology and climatological observations.
Journal of Geophysical Research,2004,109:D06201
|
CSCD被引
2
次
|
|
|
|
3.
Bingen C. A global climatology of stratospheric aerosol size distribution parameters derived from SAGE Ⅱ data over the period 1984-2000: 2. Reference data.
Journal of Geophysical Research,2004,109:D06202
|
CSCD被引
3
次
|
|
|
|
4.
Brogniez C. Analysis of 5 year aerosol data from the stratospheric aerosol and gas experiment Ⅱ.
Journal of Geophysical Research,1991,96(D8):15479-15497
|
CSCD被引
1
次
|
|
|
|
5.
Burton S P. Comparison of aerosol extinction measurements by ILAS and SAGE Ⅱ.
Geophysical Research Letters,1999,26(12):1719-1722
|
CSCD被引
1
次
|
|
|
|
6.
陈洪滨. 利用 SAGE Ⅱ 资料分析皮纳图博火山爆发前后平流层气溶胶的变化特征.
科学通报,1994,39(22):2084-2087
|
CSCD被引
8
次
|
|
|
|
7.
Fernald F G. Analysis of atmospheric lidar observations: some comments.
Applied Optics,1984,23(5):652-653
|
CSCD被引
291
次
|
|
|
|
8.
Fiocco G. Observations of the upper atmosphere by optical radar in Alaska and Sweden during the summer 1964.
Tellus,1966,18(1):34-38
|
CSCD被引
1
次
|
|
|
|
9.
Hitchman M H. A climatology of stratospheric aerosol.
Journal of Geophysical Research,1994,99(D10):20689-20700
|
CSCD被引
5
次
|
|
|
|
10.
Junge C E. Stratospheric aerosols.
Journal of Meteorology,1961,18(1):81-108
|
CSCD被引
1
次
|
|
|
|
11.
李维亮. 青藏高原地区气溶胶的时空分布特征及其辐射强迫和气候效应的数值模拟.
中国科学(D辑),2001,31(S1):300-307
|
CSCD被引
9
次
|
|
|
|
12.
刘煜. 青藏高原平流层臭氧和气溶胶的变化趋势研究.
气象学报,2007,65(6):938-945
|
CSCD被引
4
次
|
|
|
|
13.
Mauldin L E. Stratospheric aerosol and gas experiment Ⅱ instrument: a functional description.
Optical Engineering,1985,24(2):242307
|
CSCD被引
3
次
|
|
|
|
14.
McCormick M P. Satellite studies of the stratospheric aerosols.
Bulletin of American Meteorological Society,1979,60(9):1038-1046
|
CSCD被引
3
次
|
|
|
|
15.
Osborn M T. SAGE Ⅱ aerosol correlative observations: profile measurements.
Journal of Geophysical Research,1989,94(D6):8353-8366
|
CSCD被引
3
次
|
|
|
|
16.
Rosen J M. The boiling point of stratospheric aerosols.
Journal of Applied Meteorology,1971,10(5):1044-1046
|
CSCD被引
1
次
|
|
|
|
17.
Sasano Y. Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Tsukuba, Japan, from 1990 to 1993.
Applied Optics,1996,35(24):4941-4952
|
CSCD被引
45
次
|
|
|
|
18.
Sasano Y. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations.
Applied Optics,1989,28(9):1670-1679
|
CSCD被引
13
次
|
|
|
|
19.
Takamura T. Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications.
Optical and Quantum Electronics,1987,19(5):293-302
|
CSCD被引
12
次
|
|
|
|
20.
陶宗明. 激光雷达反演气溶胶后向散射系数误差估算.
中国激光,2011,38(12):1214001
|
CSCD被引
14
次
|
|
|
|
|