高分辨率遥感土地覆盖分类技术的应用研究--以重庆市黔江贫困区为例
Application of Land Cover Classification Techniques in Poverty-stricken Areas Using High Resolution Remote Sensing: A Case Study of Qianjiang District of Chongqing City
查看参考文献15篇
文摘
|
针对贫困区生态环境与资源的地表覆盖精细化调查需求,本文利用高分辨率遥感影像开展了土地覆盖信息提取的方法和应用研究。重点分析了高分辨率影像均值漂移分割、多特征提取与分析、对象级样本采集以及监督分类等技术,并综合实现了流程化的对象级土地覆盖分类。结果表明,本文串联的高分辨率影像分类技术能生成较精细的土地覆盖专题图,可及时为贫困区生态资源环境评价、碳核算等应用提供较可靠的地表覆盖数据。 |
其他语种文摘
|
To meet the actual needs of refined land-cover information in poverty-stricken areas' ecological environment assessment and resource survey, this paper studies the technology and application of accurate land-cover classification based on the high-resolution satellite images. This article focuses on the technologies of high-resolution image segmentation using the mean shift algorithm, multiple feature extraction and analysis, automatic object-sample selection, and supervised classification. Then, we give a complete realization of the streamlined object-based land-cover classification by lining up the above technologies. Finally, taking Qianjiang district of Chongqing city as an example, we carry out a land cover information extraction experiment in its poverty-stricken areas. The experimental results show that the accurate and detailed land-cover maps can be obtained using the provided technology. The meticulous and reliable land-cover information can promptly provide a base-data-support for the eco-environmental assessment and carbon accounting applications in the poverty-stricken areas. |
来源
|
地球信息科学学报
,2016,18(3):353-361 【核心库】
|
DOI
|
10.3724/SP.J.1047.2016.00353
|
关键词
|
贫困区
;
精细化土地覆盖制图
;
高分辨率遥感影像
;
面向对象分类
|
地址
|
1.
长安大学理学院数学与信息科学系, 浙江省海洋大数据挖掘与应用重点实验室, 西安, 710064
2.
中国科学院遥感与数字地球研究所, 北京, 100101
3.
浙江工业大学计算机学院, 杭州, 310023
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
测绘学 |
基金
|
国家科技支撑计划项目
;
浙江省海洋大数据挖掘与应用重点实验室开放课题项目
|
文献收藏号
|
CSCD:5648769
|
参考文献 共
15
共1页
|
1.
麻朝晖.
贫困地区经济与生态环境协调发展研究,2008:77-82
|
CSCD被引
1
次
|
|
|
|
2.
夏列钢.
遥感信息图谱支持下影像自动解译方法研究,2014
|
CSCD被引
1
次
|
|
|
|
3.
肖鹏峰.
高分辨率遥感图像分割与信息提取,2012:23-25
|
CSCD被引
1
次
|
|
|
|
4.
Comaniciu D. Mean shift: A robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619
|
CSCD被引
1767
次
|
|
|
|
5.
Huang X. An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery.
IEEE Transactions on Geoscience and Remote Sensing,2008,46(12):4173-4185
|
CSCD被引
28
次
|
|
|
|
6.
沈占锋. 高分辨率遥感影像多尺度均值漂移分割算法研究.
武汉大学学报(信息科学版),2010,35(3):313-316
|
CSCD被引
26
次
|
|
|
|
7.
Edison.
Code for the Edge Detection and Image SegmentatiON system
|
CSCD被引
1
次
|
|
|
|
8.
Fauvel M. A spatial-spectral kernel-based approach for the classification of remote-sensing images.
Pattern Recognition,2012,45(1):381-392
|
CSCD被引
21
次
|
|
|
|
9.
Demir B. Definition of effective training sets for supervised classification of remote sensing images by a novel cost-sensitive active learning method.
IEEE Transactions on Geoscience and Remote Sensing,2014,52(2):1272-1284
|
CSCD被引
2
次
|
|
|
|
10.
Tuia D. Using active learning to adapt remote sensing image classifiers.
Remote Sensing of Environment,2011,115(9):2232-2242
|
CSCD被引
11
次
|
|
|
|
11.
Mantero P. Partially supervised classification of remote sensing images through SVM-based probability density estimation.
IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):559-570
|
CSCD被引
18
次
|
|
|
|
12.
Khorram S. Development of a modified neural network-based land cover classification system using automated data selector and multiresolution remotely sensed data.
Geocarto International,2011,26(6):435-457
|
CSCD被引
1
次
|
|
|
|
13.
Dos Santos J A. Interactive multiscale classification of high-resolution remote sensing images.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2013,6(4):2020-2034
|
CSCD被引
9
次
|
|
|
|
14.
吴田军. 迁移学习支持下的遥感影像对象级分类样本自动选择方法.
测绘学报,2014,43(9):908-916
|
CSCD被引
21
次
|
|
|
|
15.
Quinlan R.
C5.0: An Informal Tutorial. Rule Quest,1998
|
CSCD被引
1
次
|
|
|
|
|