四川攀枝花新元古代苦橄质岩脉的铂族元素地球化学特征
Geochemical Characteristics of the Platinum-Group Elements of the Neoproterozoic Picritic Dykes in the Panzhihua Area,Sichuan Province
查看参考文献62篇
文摘
|
四川攀枝花地区出露有新元古代苦橄质岩脉。本文研究表明这些苦橄质岩脉的铂族元素(PGE)含量较高(19.7 ~ 29.0 ng /g), 原始地幔标准化后的PGE分布模式呈Pt-Pd富集型,Pd /Ir值(5.64 ~ 11.33)与高镁玄武岩和科马提岩相似。同时,这些岩石显示在形成过程中没有经历硫化物和PGE合金矿物的熔离,其原始岩浆起源于地幔较高程度的部分熔融,可能与地幔柱的影响有关。通过扣除铬尖晶石和橄榄石结晶分异对PGE造成的影响,得到原始岩浆的PGE组成特征为Ir、Ru、Rh相对于Pt、Pd明显亏损,在源区已无硫化物存在的条件下,这很可能是由于地幔部分熔融过程中有IPGE合金矿物残留在地幔源区。攀枝花地区苦橄质岩脉可能与该地区冷水箐Cu-Ni硫化物矿床具有相似的原始岩浆组成。 |
其他语种文摘
|
Some Neoproterozoic picritic dykes are exposed in the Panzhihua area of Sichuan province,SW China. In this study,the data of platinum-group elements(PGE) are reported for these picritic dykes. The picritic dykes are characterized by relatively high PGE contents(19.7-29.0 ng /g) and Pt-Pd enrichment in mantle-normalized patterns,with their Pd /Ir ratios ranging from 5.64 to 11.33,which are similar to those of the high magnesium basalts and komatiites. In addition,the parental magma of these picritic dykes were S-unsaturated and generated by high degree partial melting of the mantle source,with no sulfide or PGE alloys segregation. To estimate the abundances of PGE in the primary magma,we have adjusted for effects of fractional crystallization of Cr-spinel and olivine phenocrysts in a picritic sample. The obvious depletions of Ir,Ru and Rh relative to Pt and Pd in the primary magma may attribute to the retention of Ir,Ru and Rh by IPGE in their mantle source in which no residual sulfide is existed. The picritic dykes in the Panzhihua area and the Lengshuiqing Cu-Ni sulfide deposit may have similar primary magma in composition. |
来源
|
矿物岩石地球化学通报
,2016,35(1):126-137 【核心库】
|
DOI
|
10.3969/j.issn.1007-2802.2016.01.015
|
关键词
|
新元古代
;
苦橄质岩脉
;
铂族元素
;
Cu-Ni硫化物矿床
;
攀枝花
|
地址
|
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
地质学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:5646519
|
参考文献 共
62
共4页
|
1.
Albarede F. How deep do common basaltic magmas form and differentiate?.
Journal of Geophysical Research,1992,97(B7):10997-11009
|
CSCD被引
16
次
|
|
|
|
2.
Bai M. Platinum-Group Element Geochemical Characteristics of the Picrites and High-Ti Basalts in the Binchuan Area, Yunnan Province.
Acta Geologia Sinica(English Edition),2013,87(1):158-175
|
CSCD被引
3
次
|
|
|
|
3.
Ballhaus C. Fractionation of the noble metals by physical processes.
Contributions to Mineralogy and Petrology,2006,152(6):667-684
|
CSCD被引
15
次
|
|
|
|
4.
Barnes S J. The origin of the fractionation of platinum-Group elements in terrestrial magmas.
Chemical Geology,1985,53(3/4):303-323
|
CSCD被引
145
次
|
|
|
|
5.
Barnes S J. The use of metal ratios in prospecting for platinumgroup element deposits in mafic and ultramafic intrusions.
Journal of Geochemical Exploration,1990,37(1):91-99
|
CSCD被引
21
次
|
|
|
|
6.
Barnes S J. Nickelcopper occurrences in the Belleterre-Angliers Belt of the Pontiac Subprovince and the use of Cu-Pd ratios in interpreting platinumgroup element distributions.
Economic Geology,1993,88(6):1402-1418
|
CSCD被引
27
次
|
|
|
|
7.
Barnes S J. The fractionation of Ni,Cu and the noble metals in silicate and sulfide liquids.
Dynamic Processes in Magmatic ore Deposits and Their Application in Mineral Exploration,1999:69-106
|
CSCD被引
5
次
|
|
|
|
8.
Barnes S J. Formation of magmatic nickel-sulfide ore deposits and processes affecting their copper and platinum-group element contents.
Economic Geology,2005,100(1):179-213
|
CSCD被引
25
次
|
|
|
|
9.
Bezos A. Platinum-group element systematics in mid-oceanic ridge basaltic glasses from the Pacific, Atlantic,and Indian Oceans.
Geochimica et Cosmochimica Acta,2005,69(10):2613-2627
|
CSCD被引
8
次
|
|
|
|
10.
Borisov A. Solubilities of noble metals in Fe-containing silicate melts as derived from experiments in Fe-free systems.
American Mineralogist,2000,85(11/12):1665-1673
|
CSCD被引
10
次
|
|
|
|
11.
Brenan J M. High-temperature stability of laurite and Ru-Os-Ir alloy and their role in PGE fractionation in mafic magmas.
Canadian Mineralogist,2001,39(2):341-360
|
CSCD被引
13
次
|
|
|
|
12.
Edwards S J. Harzburgites and refractory melts in the Lewis Hills massif,Bay of Islands ophiolite complex:the base-metals and precious-metals story.
Canadian Mineralogist,1990,28:537-552
|
CSCD被引
8
次
|
|
|
|
13.
Fleet M E. Partitioning of platinum-group elements in the Fe-Ni-S system and their fractionation in nature.
Geochimica et Cosmochimica Acta,1991,55(1):245-253
|
CSCD被引
23
次
|
|
|
|
14.
Green D H. Primary magmas and mantle temperatures.
European Journal of Mineralogy,2001,13(3):437-451
|
CSCD被引
9
次
|
|
|
|
15.
Hamlyn P R. Precious metals in magnesian low-Ti lavas:Implications for metallogenesis and sulfur saturation in primary magmas.
Geochimica et Cosmochimica Acta,1985,49(8):1797-1911
|
CSCD被引
46
次
|
|
|
|
16.
Keays R R. The role of komatiitic and picritic magmatism and Ssaturation in the formation of ore deposits.
Lithos,1995,34(1/3):1-18
|
CSCD被引
110
次
|
|
|
|
17.
Li C S. Controls on PGE fractionation in the Emeishan picrites and basalts:Constraints from integrated lithophile-siderophile elements and Sr-Nd isotopes.
Geochimica et Cosmochimica Acta,2012,90:12-32
|
CSCD被引
19
次
|
|
|
|
18.
Li C Y. Sulfur contents at sulfide-liquid or anhydrite saturation in silicate melts:Empirical equations and example applications.
Economic Geology,2009,104(3):405-412
|
CSCD被引
27
次
|
|
|
|
19.
Li Z X. The breakup of Rodinia:Did it start with a mantle plume beneath South China?.
Earth and Planetary Science Letters,1999,173(3):171-181
|
CSCD被引
349
次
|
|
|
|
20.
Lightfoot P C. Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap,Noril'sk Region:Implications for the origin of the Ni-Cu-PGE sulfide ores.
Economical Geology,2005,100(3):439-462
|
CSCD被引
49
次
|
|
|
|
|