带有落角约束的间接Gauss伪谱最优制导律
Optimal Guidance Law with Impact Angle Constraints Based on Indirect Gauss Pseudospectral Method
查看参考文献22篇
文摘
|
针对带有落角约束的末制导问题,提出了一种基于极小值原理和Gauss伪谱法的最优制导律。以期望落角方向为坐标轴定义了落角坐标系,并在其中建立了线性化的导引运动关系方程。将控制系统简化为1阶惯性环节,利用极小值原理得到正则方程,然后引入Gauss伪谱法进行离散,将其转化为代数方程,结合边界条件,推导出最优制导律的解析表达式,无需任何积分过程,避免了求解黎卡提微分方程。仿真结果表明,所提出的算法运算量小,计算效率高,同时也能方便地求解出复杂加权矩阵下的最优制导律,能够在满足落角约束的条件下更快地收敛到落角参考线,并且具有更小的末端需用过载。 |
其他语种文摘
|
A novel optimal guidance law is proposed for the terminal guidance with impact angle constraints by using the combination of the minimal principle and Gauss pseudospectral method. An impact angle coordinate system is defined with an coordinate axis in the direction of the desired impact angle, and the linear engagement kinematics is established using this coordinate system. The control system of missile is simplified into a first-order inertial system. The canonical equation is obtained via the minimal principle,and then translated into a set of algebraic equations by employing the Gauss pseudospectral method. According to the boundary conditions,an analytical solution is finally derived for the optimal guidance law with impact angle constraints without any integral process or solving the Riccati differential equation. Numerical simulations show that the proposed guidance law ensures the much fast convergence of impact angle to the reference line,and has smaller required terminal acceleration compared with other guidance laws. In addition,the proposed guidance law can easily tackle with the guidance problem with complex weighting matrices. |
来源
|
兵工学报
,2015,36(7):1203-1212 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2015.07.008
|
关键词
|
兵器科学与技术
;
落角约束
;
最优控制
;
末制导律
;
极小值原理
;
间接Gauss伪谱法
|
地址
|
南京理工大学能源与动力工程学院, 江苏, 南京, 210094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
武器工业 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:5485912
|
参考文献 共
22
共2页
|
1.
Ashwini R. Impact angle constrained guidance against nonstationary nonmaneuvering targets.
Journal of Guidance, Control,and Dynamics,2010,33(1):269-275
|
CSCD被引
52
次
|
|
|
|
2.
Sun M W. Practical solution to impact angle control in vertical plane.
Journal of Guidance,Control,and Dynamics,2014,37(3):1022-1027
|
CSCD被引
2
次
|
|
|
|
3.
张友安. 带有攻击角度和攻击时间控制的三维制导.
航空学报,2008,29(4):1020-1026
|
CSCD被引
27
次
|
|
|
|
4.
Harrison G A. Hybrid guidance law for approach angle and timeof-arrival control.
Journal of Guidance,Control,and Dynamics,2012,35(4):1104-1114
|
CSCD被引
7
次
|
|
|
|
5.
胡锡精. 具有碰撞角约束的三维圆轨迹制导律.
航空学报,2012,33(3):508-519
|
CSCD被引
13
次
|
|
|
|
6.
魏鹏鑫. 具有落角约束的弹道导弹再入末制导律设计.
哈尔滨工业大学学报,2013,45(9):23-30
|
CSCD被引
8
次
|
|
|
|
7.
Oza H B. Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles.
Journal of Guidance,Control,and Dynamics,2012,35(1):153-164
|
CSCD被引
37
次
|
|
|
|
8.
Lee C H. Design of impact angle control guidance laws via high-performance sliding mode control.
Journal of Aerospace Engineering,2013,227(2):235-253
|
CSCD被引
9
次
|
|
|
|
9.
Kumar S R. Nonsingular terminal sliding mode guidance with impact angle constraints.
Journal of Guidance, Control,and Dynamics,2014,37(4):1114-1130
|
CSCD被引
76
次
|
|
|
|
10.
Ryoo C K. Time-to-go weighted optimal guidance with impact angle constraints.
IEEE Transactions on Control Systems Technology,2006,14(3):483-492
|
CSCD被引
96
次
|
|
|
|
11.
Shaferman V. Linear quadratic guidance laws for imposing a terminal intercept angle.
Journal of Guidance,Control, and Dynamics,2008,31(5):1400-1412
|
CSCD被引
42
次
|
|
|
|
12.
Cho H. Optimal impact angle control guidance law based on linearization about collision triangle.
Journal of Guidance,Control,and Dynamics,2014,37(3):958-964
|
CSCD被引
13
次
|
|
|
|
13.
窦磊. 大着地角卫星制导炸弹最优制导律研究.
南京理工大学学报:自然科学版,2010,34(3):314-318
|
CSCD被引
5
次
|
|
|
|
14.
侯明善. 精确对地攻击姿态约束最优末制导设计.
兵工学报,2008,29(1):63-67
|
CSCD被引
8
次
|
|
|
|
15.
Zhang L M. Receding horizon trajectory optimization with terminal impact specifications.
Mathematical Problems in Engineering,2014(5):604705
|
CSCD被引
3
次
|
|
|
|
16.
Rusnak I. Modern guidance law for high-order autopilot.
Journal of Guidance, Control, and Dynamics,1991,14(5):1056-1058
|
CSCD被引
5
次
|
|
|
|
17.
关冶.
数值分析基础,2005
|
CSCD被引
3
次
|
|
|
|
18.
Darby C L. Minimum-fuel low-earth-orbit aeroassisted orbital transfer of small spacecraft.
Journal of Spacecraft and Rockets,2011,48(4):618-628
|
CSCD被引
6
次
|
|
|
|
19.
Furfaro R. Asteroid precision landing via multiple sliding surfaces guidance techniques.
Journal of Guidance,Control,and Dynamics,2013,36(4):1075-1092
|
CSCD被引
10
次
|
|
|
|
20.
Boyarko G. Time-optimal reorientation of a spacecraft using an inverse dynamics optimization method.
Journal of Guidance,Control,and Dynamics,2011,34(4):1197-1208
|
CSCD被引
11
次
|
|
|
|
|