复合材料主动冷却薄壁燃烧室设计分析
Design analysis of active cooling composite combustion chamber with thin wall
查看参考文献16篇
文摘
|
通过建立流固耦合传热模型,对不同尺寸冷却通道的主动冷却薄壁燃烧室结构瞬态传热特性进行数值模拟,给出了主动冷却燃烧室的瞬态温度场分布及其演化.再采用有限元法计算燃烧室的热应力和应变,从而揭示了冷却通道几何参数及内部煤油体积流量对燃烧室薄壁结构最高温度和热应力的影响规律.计算结果表明:在充分发挥煤油冷却效果前提下,冷却通道距离燃烧室内壁距离越近,所需煤油体积流量越大,而燃烧室结构热应力在10s左右达到最大值,设计时应着重考虑这段时间内的材料性能. |
其他语种文摘
|
Using the proposed fluid solid coupling heat transfer model, numerical simulation was carried out for the transient heat transfer properties of active cooling combustion chambers with thin wall with different geometric sizes of cooling channels. The distribution and evolution of transient temperature field of active cooling combustion chambers were given. Finite element method was adopted to calculate the thermal stress and strain of combustion chamber. The influence laws of geometric parameters of cooling channels and inner volume flow rate of kerosene on the highest temperature and thermal stress of the thin wall of combustion chamber were explored. The results show that, while bringing the kerosene cooling effect into full play, if the cooling channel is closer to the inner wall of the combustion chamber, the larger kerosene volume flow rate is needed. More attention should be paid to the material properties at 10s when the thermal stress of the combustion chamber structure reaches peak value. |
来源
|
航空动力学报
,2013,28(11):2401-2407 【核心库】
|
关键词
|
燃烧室
;
主动冷却
;
复合材料
;
几何构型
;
流固耦合
|
地址
|
中国科学院力学研究所, 中国科学院流固耦合系统力学重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-8055 |
学科
|
航空 |
基金
|
国家重大科技计划
|
文献收藏号
|
CSCD:4992786
|
参考文献 共
16
共1页
|
1.
Clement B.
Fully ceramic composite heat exchanger qualification for advanced combustion chambers. AIAA-2005-3433,2005
|
CSCD被引
1
次
|
|
|
|
2.
Clement B. Ceramic matrix composites cooled panel development for advanced propulsion systems.
45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference,2004:19-22
|
CSCD被引
1
次
|
|
|
|
3.
Marc B. PTAH-SOCAR fuel-cooled composite materials structure for dual-mode ramjet and liquid rocket engines:2005 status.
AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies,2005:1-11
|
CSCD被引
1
次
|
|
|
|
4.
Marc B. PTAH-SOCAR fuel cooled composite materials structure for dual-mode ramjet and liquid rocket engines.
40th AIAA/ASME/ASAE/ASEE Joint Propulsion Conference and Exhibit,2004:11-14
|
CSCD被引
1
次
|
|
|
|
5.
Alber H B.
Hypersonic air-breathing propulsion efforts in the air force research laboratory. AIAA-2005-3255,2005
|
CSCD被引
1
次
|
|
|
|
6.
Joseph M H.
The X-51A scram-jet engine flight demonstration program. AIAA-2008-2540,2008
|
CSCD被引
1
次
|
|
|
|
7.
Lorenzo V.
Design of actively cooled panels for scramjets. AIAA-2006-8069,2006
|
CSCD被引
1
次
|
|
|
|
8.
Dennis H P.
Integrated numerical methods for hypersonic aircraft cooling systems analysis. AIAA 92-0254,1992
|
CSCD被引
1
次
|
|
|
|
9.
吴峰. 液体推进剂火箭发动机推力室再生冷却通道三维流动与传热数值计算.
航空动力学报,2005,20(4):707-712
|
CSCD被引
6
次
|
|
|
|
10.
吴峰. 液体火箭发动机推力室冷却通道传热优化计算.
推进技术,2006,27(3):197-200
|
CSCD被引
7
次
|
|
|
|
11.
吴峰. 通道深宽比对液体火箭发动机推力室再生冷却的影响.
航空动力学报,2007,22(1):114-118
|
CSCD被引
8
次
|
|
|
|
12.
彭丽娜. 耐高温复合材料的主动冷却实验和数值计算研究.
宇航学报,2008,29(5):1668-1672
|
CSCD被引
8
次
|
|
|
|
13.
仲峰泉. 带主动冷却的超声速燃烧室传热分析.
推进技术,2009,30(5):513-517
|
CSCD被引
9
次
|
|
|
|
14.
郭运强.
某型发动机火箭筒非均匀温度场下热应力分析,2004
|
CSCD被引
1
次
|
|
|
|
15.
彭志琦. 曲率半径对前缘气动热与结构响应的影响.
力学与实践,2011,33(2):18-23
|
CSCD被引
3
次
|
|
|
|
16.
彭志琦.
前缘类构件的热结构分析及参数影响规律研究,2011
|
CSCD被引
1
次
|
|
|
|
|