帮助 关于我们

返回检索结果

太阳总辐照度的监测与重建研究进展
Research progress in monitoring and reconstruction of Total Solar Irradiance

查看参考文献75篇

文摘 太阳总辐照度(TSI)变化是影响地球气候变化的重要因素,对TSI 的监测与重建是研究太阳活动驱动全球气候变化机制的重要基础。本文回顾了地基平台和卫星平台的TSI 监测历程及其取得的主要研究成果,分析了利用宇宙成因核素和地外天体信息重建TSI 的研究进展及所存在的问题,并对该领域未来的发展方向进行展望。现有的地基平台和卫星平台TSI 监测资料表明,太阳活动周期中TSI 的变化幅度很小,不足以引起各种记录中所观测到的气候变化。但太阳物理领域迄今尚未完全解译TSI 变化的物理过程,加之TSI 监测资料所限,难以判定其过去或未来的变幅,需整合现有3种主要的数据合成方法,并继续坚持TSI 长期监测。此外,还需利用宇宙成因核素、地外天体信息反演等新方法重建过去太阳活动所造成的TSI 变化,以获得长周期TSI变化序列。
其他语种文摘 Total Solar Irradiance (TSI) is defined as total energy of electromagnetic radiation of all bands from the sun to any sphere (including the Earth's surface) in per unit area and per unit time. Change of TSI in solar active cycle has been considered as one of important candidate factors impacting global climate change. Monitoring and reconstruction of TSI is the important foundation for the study of the mechanism of how solar activities drive global climate change. In this article, we first reviewed the history of both ground-based and satellite-based TSI monitoring and the results they produced. Then, we analyzed the research progress on, and the problems in, using cosmogenic nuclides and celestial information to reconstruct TSI series. Finally, we provided an outlook of future directions in this field. Existing ground-based and satellite-based TSI monitoring has access to lots of TSI series of different time-scales and temporal resolution. The TSI monitoring data shows that TSI changes very little in each solar activity cycle, not enough to cause the earth surface temperature rise observed and documented in a variety of records. However, solar physics has not yet fully interpreted the physical process of TSI change, and, with limited TSI monitoring data, it is difficult to find out the mechanism of how solar activities cause TSI changes and drive the climate change. It is also impossible to accurately determine the variations of the past or future solar activities and TSI. In addition, due to instrument capacity, service time, monitoring environment and other objective factors, the TSI data has many uncertainties. Therefore, it is necessary to continue exploring the mechanism of solar activities and the TSI change, develop higher precision equipment, integrate different data composite methods, such as ACRIM, PMOD, and IRMB, and adhere to long-term TSI monitoring. In addition, use of cosmogenic nuclides such as 10Be and 14C in reconstructing TSI change caused by solar activity is also necessary to obtain long-period TSI series. By using cosmogenic nuclides, many historical TSI series have been reconstructed. Since the index of cosmogenic nuclides is an indirect record of TSI, we need to find out the records directly driven by TSI change. Explorations to other planets in the near future may provide a unique opportunity to resolve this issue. Currently, deriving historical TSI from celestial information such as lunar borehole temperatures has proved to be feasible. Furthermore, limitations of these methods should be noticed, and we need to improve the method of TSI reconstruction, so that we can get longer sequences and more accurate reconstruction of historical TSI. With the accumulation of long-term TSI monitoring data and progress in long sequence historical TSI reconstruction, we will obtain more and more detailed and reliable TSI series. It's important to objectively assess the impact of human activities on global climate change, and take effective measures accordingly to achieve the sustainability of earth surface system.
来源 地理科学进展 ,2013,32(10):1567-1576 【核心库】
关键词 太阳活动 ; 太阳总辐照度 ; 监测 ; 重建 ; 研究进展
地址

华东师范大学, 地理信息科学教育部重点实验室, 上海, 200241

语种 中文
文献类型 综述型
ISSN 1007-6301
学科 自然地理学
基金 国家973计划 ;  国家自然科学基金
文献收藏号 CSCD:4966339

参考文献 共 75 共4页

1.  Beer J. Use of 10Be in polar ice to trade the 11-year cycle of solar activity. Nature,1990,347:164-166 CSCD被引 8    
2.  Bond G. A pervasive millennial- scale cycle in north Atlantic Holocene and glacial climate. Science,1997,278:1257-1266 CSCD被引 393    
3.  Broecker W S. The influence of air and sea exchange on the carbon isotope distribution in the sea. Global Biochemical Cycles,1992,6(3):315-320 CSCD被引 6    
4.  Dewitte S. Measurement and uncertainty of the long-term total solar irradiance trend. Solar Physics,2004,224(1/2):209-216 CSCD被引 3    
5.  Eddy J A. Climate and the changing sun. Climate Change,1997,1(2):173-190 CSCD被引 19    
6.  Edouard B. Solar modulation of cosmogenic nuclide production over the Last Millennium: comparison between 14C and 10Be records. Earth and Planetary Science Letters,1997,150(3):453-462 CSCD被引 7    
7.  Egorova T. Chemical and dynamical response to the 11-year variability of the solar irradiance simulated with a chemistry-climate model. Geophysical Research Letters,2004,31(6):6119-6122 CSCD被引 1    
8.  Fleagle R G. An introduction to atmospheric physics,1980 CSCD被引 2    
9.  Forster P. Changes in atmospheric constituents and in radioactive forcing. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of IPCC,2007:129-234 CSCD被引 1    
10.  Foster S S. Reconstruction of solar irradiance variations, for use in studies of global climate change: Application of recent SOHO observations with historic data from the Greenwich observations,2004 CSCD被引 1    
11.  Foukal P. Variations in solar luminosity and their effect on the earth's climate. Nature,2006,443:161-166 CSCD被引 14    
12.  Frohlich C. In-flight performances of VIRGO solar irradiance instruments on SOHO. Solar Physics,1997,175(2):267-286 CSCD被引 4    
13.  Frohlich C. Solar radiative output and its variability: Evidence and mechanisms. Astronomy and Astrophysics Review,2004,12(4):273-320 CSCD被引 10    
14.  Frohlich C. Solar irradiance variability since 1978. Space Science Reviews,2006,125(1/4):53-65 CSCD被引 9    
15.  Gray L J. Solar influences on climate. Reviews of Geophysics,2010,48(4):RG4001 CSCD被引 58    
16.  Greg K. A new, lower value of total solar irradiance: evidence and climate significance. Geophysical Research Letters,2011,38(1):L01706 CSCD被引 22    
17.  Haigh J D. The role of stratospheric ozone in modulating the solar radioactive forcing of climate. Nature,1994,370:544-546 CSCD被引 12    
18.  Haigh J D. The impact of solar variability on climate. Science,1996,272:981-984 CSCD被引 28    
19.  Haigh J D. An influence of solar spectral variations on radiative forcing of climate. Nature,2010,467:696-699 CSCD被引 12    
20.  Hansen J. Global temperature change. Proceedings of the National Academy of Sciences of the United States of America,2006,103(39):14288-14293 CSCD被引 85    
引证文献 4

1 曹佃生 红外双光栅光谱仪波长扫描机构设计与精度分析 中国激光,2017,44(5):0511002-1-0511002-7
CSCD被引 4

2 曹佃生 紫外双光栅光谱仪结构设计与波长精度分析 中国光学,2018,11(2):219-230
CSCD被引 7

显示所有4篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号