交通流模型基于特征投影分解技术的外推降维有限差分格式
A EXTRAPOLATION REDUCED-ORDER FDS BASED ON POD TECHNIQUE FOR TRAFFIC FLOW MODEL
查看参考文献44篇
文摘
|
利用特征正交分解(proper orthogonal decomposition,简记为POD)技术研究交通流的Aw-Rascle-Zhang(ARZ)模型.建立一种基于POD方法维数较低的外推降维有限差分格式,并用数值例子检验数值计算结果与理论结果相吻合,进一步表明基于POD方法的外推降维有限差分格式对于求解交通流方程数值解是可行和有效的. |
其他语种文摘
|
In this paper, a traffic flow Aw-Rascle-Zhang(ARZ) model is studied with a proper orthogonal decomposition (POD) technique. A extrapolation reduced-order finite difference scheme (FDS) based on POD method with lower dimension is established. And a numerical example is used to verify that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the extrapolation reduced-order FDS based on POD method is feasible and efficient for finding numerical solutions for traffic flow equation. |
来源
|
计算数学
,2013,35(2):159-170 【核心库】
|
关键词
|
特征正交分解
;
交通流ARZ模型
;
外推降维有限差分格式
;
数值模拟
|
地址
|
1.
华北电力大学(北京)数理学院, 北京, 102206
2.
贵州师范大学数学与计算机科学学院, 贵阳, 550001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-7791 |
学科
|
数学 |
基金
|
河北省自然科学基金
;
贵州省项目
;
国家自然科学基金
|
文献收藏号
|
CSCD:4839797
|
参考文献 共
44
共3页
|
1.
Lighthill M H. On kinematics wave: II. A theory of traffic flow on long crowded roads.
Proc. Roy. Soc. London, Ser., A,1955,22:317-345
|
CSCD被引
5
次
|
|
|
|
2.
Aw A. Resurrection of second order models of traffic flow.
SIAM J. Appl. Math,2000,60:916-938
|
CSCD被引
41
次
|
|
|
|
3.
Zhang H M. A non-equilibrium traffic model devoid of gas-like behavior.
Transportation Research Part B,2002,36:275-290
|
CSCD被引
35
次
|
|
|
|
4.
Zhang P. Hyperbolic conservation laws with space-dependent flux (I): Characteristics theory and Riemann problem.
Journal of Computational and Applied Mathematics,2003,156:1-21
|
CSCD被引
10
次
|
|
|
|
5.
Zhang P. Hyperbolic conservation laws with space-dependent fluxes: II. general study of numerical fluxes.
Journal of Computational and Applied Mathematics,2005,176(1):105-129
|
CSCD被引
8
次
|
|
|
|
6.
Siebel F. On the fundamental diagram of traffic flow.
SIAM J. Appl. Math,2006,66(4):1150-1162
|
CSCD被引
4
次
|
|
|
|
7.
Mendez A R. An alternative model in traffic flow equations.
Transportation Research Part B,2008,42:782-797
|
CSCD被引
1
次
|
|
|
|
8.
Holmes P.
Turbulence, coherent structures, dynamical systems and symmetry,1996
|
CSCD被引
28
次
|
|
|
|
9.
Fukunaga K.
Introduction to statistical recognition,1990
|
CSCD被引
24
次
|
|
|
|
10.
Jolliffe I T.
Principal component analysis,2002
|
CSCD被引
118
次
|
|
|
|
11.
Sirovich L. Turbulence and the dynamics of coherent structures: Part I-III.
Quarterly of Applied Mathematics,1987,45:561-590
|
CSCD被引
213
次
|
|
|
|
12.
Berkooz G. The proper orthogonal decomposition in analysis of turbulent flows.
Annual Review of Fluid Mechanics,1993,25:539-575
|
CSCD被引
112
次
|
|
|
|
13.
Ly H V. Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor.
Quarterly of Applied Mathematics,2002,60:631-656
|
CSCD被引
20
次
|
|
|
|
14.
Kunisch K. Galerkin proper orthogonal decomposition methods for parabolic problems.
Numerische Mathematik,2001,90:117-148
|
CSCD被引
22
次
|
|
|
|
15.
Kunisch K. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics.
SIAM Journal on Numerical Analysis,2002,40:492-515
|
CSCD被引
32
次
|
|
|
|
16.
罗振东. 抛物型方程基于POD方法的时间二阶精度CN有限元降维格式.
中国科学. 数学,2011,41(5):447-460
|
CSCD被引
6
次
|
|
|
|
17.
Luo Z D. A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem.
Journal of Mathematical Analysis and Applications,2012,385:310-321
|
CSCD被引
10
次
|
|
|
|
18.
Luo Z D. A reduced finite element formulation and error estimates based on POD method for two-dimensional solute transport problems.
Journal of Mathematical Analysis and Applications,2012,385:371-383
|
CSCD被引
10
次
|
|
|
|
19.
Luo Z D. A reduced finite difference scheme and error estimates based on POD method for the non-stationary Stokes equation.
Applied Mathematics and Mechanics,2011,32(7):847-858
|
CSCD被引
7
次
|
|
|
|
20.
Luo Z D. A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the no-stationary Navier-Stokes equations.
International Journal for Numerical Methods in Engineering,2011,88(1):31-46
|
CSCD被引
12
次
|
|
|
|
|