秦岭南北地区光合有效辐射时空变化及突变特征
Distribution and change of Photosynthetically Active Radiation (PAR) in the northern and southern regions of Qinling Mountains, China
查看参考文献31篇
文摘
|
基于秦岭南北地区47个气象站1960-2011年的逐日气象数据,通过Angstrom方程和Penman-Monteith公式计算了各站点的光合有效辐射(PAR),并借助Spline空间插值、Pettitt突变点检验和相关分析等手段对PAR的空间分布、时空演变、突变特征及其可能成因进行了分析。结果表明:①秦岭南北地区PAR的时间和空间分布特征明显,在空间上呈北高南低的分布格局;在季节分布上,夏季、春季、秋季、冬季依次减小。②52年间,该地区年PAR整体呈显著下降趋势,下降速率由南向北,由东向西递减;时间变化方面,春季PAR呈现不显著的上升趋势,其余季节均呈下降趋势,夏季减小最快,其次为冬季,秋季最小。③该地区89%的站点年PAR存在突变,突变站点中的85%发生于1979-1983年间;夏季89%的站点发生突变,突变站点中的90%发生于1979-1983年间;冬季68%的站点发生突变,但突变时间同步性和一致性较差;春季和秋季突变现象不甚明显。④气候变化(风速下降)、城市化进程加快以及工业生产导致的气溶胶增多是导致PAR显著下降的主要原因,而火山爆发引发的气溶胶增加则是PAR波动的主要原因。 |
其他语种文摘
|
Based on 52-year (1960-2011) daily data from 47 meteorological stations in the northern and southern regions of Qinling Mountains, the annual and seasonal Photosynthetically Active Radiations (PAR) were calculated with equations of Angstrom and FAO Penman-Monteith. The spatial distribution, change trends and their causes were analyzed and detected with spatial analysis method of spline interpolation, Pettitt abrupt change point detection method and correlation analysis between PAR and relative factors. The results were as followed: (1) the PAR became weaker from north part to south part, i.e. from northern region of Qinling Mountains (NQ), to southern region of Qinling Mountains (SQ), to Han River Basin (HB) and to Valleys of Ba and Wu Mountain Areas (VBW). PAR in summer was the highest, followed by spring, autumn and winter. The distribution of PAR in spring, autumn and winter showed the same spatial pattern as annual PAR, but in summer, PAR in NQ is also the highest, then HB and VBW, and SQ being the lowest one. (2) PAR declined significantly in past 52a, the declining rates became smaller from south and east part to north and west part of this region. Except for an insignificant increase in spring, PAR decreased in other seasons, and the rate in summer was fastest, followed by that in winter and autumn. The maximum and minimum PAR appeared in 1960s-1970s and 2000s respectively in spring, summer and autumn. There were almost half of stations showing an increase of PAR mainly in west and central parts, and the other half stations showing decrease in spring. PAR of 79% of stations decreased in autumn, and the increasing stations were also located in west and central parts. PAR in summer and winter declined in most stations, and the decreasing rate was bigger in south part of Qingling Mountains than in north part. (3) 89% of stations had abrupt change points of yearly and summer PAR, and about 85% and 90% of them happened between 1979 and 1983, respectively. There were no obvious abrupt change points in spring or autumn. (4) Climate change (wind speed declining), fast urbanization and more aerosol emission from industrial production were the main reasons for the continuous decline of PAR, and the aerosol emitted from volcanoes was the main reason for fluctuation of PAR. |
来源
|
地理科学进展
,2013,32(3):435-446 【核心库】
|
关键词
|
光合有效辐射(PAR)
;
空间分布
;
趋势
;
突变点
;
秦岭南北地区
|
地址
|
1.
西北农林科技大学资源环境学院, 地表过程与资源生态国家重点实验室, 杨凌, 712100
2.
北京师范大学全球变化与地球系统科学研究院, 地表过程与资源生态国家重点实验室, 北京, 100875
3.
西北农林科技大学资源环境学院, 杨凌, 712100
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-6301 |
学科
|
大气科学(气象学) |
基金
|
国家自然科学基金
;
中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室基金
;
中荷联合主题研究项目
|
文献收藏号
|
CSCD:4800025
|
参考文献 共
31
共2页
|
1.
Allen R G.
Crop evapotranspiration: Guidelines for computing crop water requirements,1998
|
CSCD被引
102
次
|
|
|
|
2.
Angstrom A. A Solar and terrestrial radiation.
Quarterly Journal of the Royal Meteorological Society,1924,50(1):121-125
|
CSCD被引
92
次
|
|
|
|
3.
白晶.
秦岭南北气候变化特征及人为驱动力差异分析,2011
|
CSCD被引
7
次
|
|
|
|
4.
白建辉. 内蒙古草原光合有效辐射的计算方法.
环境科学研究,17(6):15-18
|
CSCD被引
1
次
|
|
|
|
5.
Cao M K. Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and atmospheric CO_2.
Tellus Series B-Chemical and Physical Meteorology,2005,57(3):210-217
|
CSCD被引
21
次
|
|
|
|
6.
董泰锋. 光合有效辐射(PAR)估算的研究进展.
地理科学进展,2011,30(9):1125-1134
|
CSCD被引
15
次
|
|
|
|
7.
杜川利. 过去60年中国秦岭地区云量变化及原因分析.
高原气象,2012,31(5):446-455
|
CSCD被引
8
次
|
|
|
|
8.
Graham E A. Cloud cover limits net CO_2 uptake and growth of a rainforest tree during tropical rainy seasons.
Proceedings of the National Academy of Sciences of the United States of America,2003,10(2):572-576
|
CSCD被引
22
次
|
|
|
|
9.
何洪林.
中国陆地区域太阳辐射要素空间化研究,2004
|
CSCD被引
2
次
|
|
|
|
10.
Hu B. Spatiotemporal characteristics of photosynthetically active radiation in China.
Journal of Geophysical Research,2007,12(6):12-19
|
CSCD被引
1
次
|
|
|
|
11.
Hutchinson M F. Splines is more than just a smooth interpolator.
Geoderma,1994,62(1):45-67
|
CSCD被引
46
次
|
|
|
|
12.
贾金明. 河南日照变化特征及成因分析.
气象科技,2007,35(5):655-660
|
CSCD被引
13
次
|
|
|
|
13.
Lean J. The sun's variable radiation and its relevance for earth.
Annual Review of Astronomy and Astrophysics,1997,35(1):33-67
|
CSCD被引
9
次
|
|
|
|
14.
李晓文. 中国近30年太阳辐射状况研究.
应用气象学报,1998,9(1):24-31
|
CSCD被引
107
次
|
|
|
|
15.
林忠辉. 中国陆地区域气象要素的空间插值.
地理学报,2002,57(1):47-56
|
CSCD被引
215
次
|
|
|
|
16.
刘新安. 辽宁省太阳辐射的计算方法及其分布特征.
资源科学,2002,24(1):82-87
|
CSCD被引
26
次
|
|
|
|
17.
Minnis P. Radiative climate forcing by the Mount Pinatubo Eruption.
Science,1993,259:1411-1415
|
CSCD被引
7
次
|
|
|
|
18.
Monteith J L. Solar-radiation and productivity in tropical ecosystems.
Journal of Applied Ecology,1972,9(3):747-766
|
CSCD被引
188
次
|
|
|
|
19.
Monteith J L. Climate and efficiency of crop production in Britain.
Philosophical Transactions of the Royal Society of London Series B: Biological Sciences,1977,28(8):277-294
|
CSCD被引
89
次
|
|
|
|
20.
Pettitt A N. A non-parametric approach to the change point problem.
Applied Statistics,1979,28(2):126-135
|
CSCD被引
232
次
|
|
|
|
|