基于辛格式的谱元法及其在横向各向同性介质波场模拟中的应用
THE SEM BASED ON SYMPLECTICAL SCHEMES AND ITS APPLICATION IN MODELING THE WAVE PROPAGATION IN TRANSVERSELY ISOTROPIC MEDIA
查看参考文献25篇
文摘
|
基于分部的Runge-Kutta离散形式, 给出了一种新的三阶辛积分算法, 数值试验表明,长时程计算时该算法具有好的控制误差累积的能力; 与有限差分法进行空间域离散相结合, 通过数值试验进一步说明算法的有效性. 注意到位移波动方程通过谱元离散后的微分方程组, 完全符合新推导的三阶辛算法离散所需形式, 因此将该三阶辛算法与谱元法结合具有很好的优势, 并通过对横向各向同性介质弹性波场的模拟, 结果显示不但成功模拟了波的传播特性, 而且相对于传统算法, 优势明显服务. |
其他语种文摘
|
A new three-stage third-order solution (NTSTO) to symplectical schemes is obtained based on partitioned Runge-Kutta form, several numerical results show that, the scheme is excellent in suppressing residual increase. Combining finite difference(FD) in spatial discretization with the new symplectical scheme in temporal discretization, the further numerical experiments are provided and the results also show that the method is effective. The form is completely consistent with the requirements of the symplectical scheme in time domain when the elastic wave equations are discretized using spectral element methods(SEM) in space domain. So it is natural to solve the elastic wave equations using the symplectical scheme combined with the spectral element methods (NTSTO-SEM). Finally, the algorithm is employed to simulate wave propagation in transversely isotropic media, the results show that the performance is good and superior to classical algorithms, such as Newmark method combined with SEM (Newmark-SEM) and Runge-Kutta method of third-order combined with SEM (RK3-SEM). |
来源
|
数值计算与计算机应用
,2013,34(1):20-30 【扩展库】
|
关键词
|
谱元法
;
辛格式
;
横向各向同性介质
|
地址
|
1.
宁夏大学数学计算机学院, 银川, 750021
2.
中国科学院地质与地球物理研究所, 北京, 100029
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3266 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
国家973计划
|
文献收藏号
|
CSCD:4781241
|
参考文献 共
25
共2页
|
1.
冯康.
哈密尔顿系统的辛几何算法,2003
|
CSCD被引
63
次
|
|
|
|
2.
Hairer E.
Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations,2006
|
CSCD被引
23
次
|
|
|
|
3.
Forest E. Fourth-order symplectic integration.
Physica. D,1990,43(1):105-117
|
CSCD被引
29
次
|
|
|
|
4.
Sun W. Symplectic integrators with potential derivatives to third order.
Research in Astron. Astrophys,2011,11(3):353-368
|
CSCD被引
10
次
|
|
|
|
5.
Li R. Two New Fourth-Order Three-Stage Symplectic Integrators.
Chin. Phys. Lett,2011,28(7):070201
|
CSCD被引
8
次
|
|
|
|
6.
Li X F. Scalar seismic-wave equation modeling by a multisymplectic discrete singular convolution differentiator method.
Bulletin of the seismological society of America,2011,101(4):1701-1718
|
CSCD被引
17
次
|
|
|
|
7.
李一琼. 基于辛格式奇异核褶积微分算子的地震标量波场模拟.
地球物理学报,2011,54(7):1827-1834
|
CSCD被引
12
次
|
|
|
|
8.
邢誉峰. 李级数算法和显式辛算法的相位分析.
计算力学学报,2009,26(2):167-171
|
CSCD被引
9
次
|
|
|
|
9.
Iwatsu R. Two new solutions to the third-order symplectic integration method.
Phys. Lett. A,2009,373(34):3056-3060
|
CSCD被引
8
次
|
|
|
|
10.
Ruth R D. A canonical integration technique.
IEEE Transactions on Nuclear Science,1983,30(4):2669-2671
|
CSCD被引
53
次
|
|
|
|
11.
Zhong W X. Analytical structural mechanics and finite element.
Journal of Dynamics and Control(in Chinese),2004,2(4):1-8
|
CSCD被引
20
次
|
|
|
|
12.
Chaljub E. Spectral-element analysis in seismology.
Advances in Geophysics,2007,48:365-419
|
CSCD被引
17
次
|
|
|
|
13.
Van Der Houwen P J. Explict Runge-Kutta (-Nystrom) methods with reduced phase errors for computing oscillating solutions.
SIAM J. Numer. Anal,1987,24(3):595-617
|
CSCD被引
6
次
|
|
|
|
14.
Ablowitz M J. Solitary wave collisions.
SIMA J. Appl. Math,1979,36(3):428-437
|
CSCD被引
4
次
|
|
|
|
15.
Shen J.
Spectral and high-order methods with applications,2006
|
CSCD被引
51
次
|
|
|
|
16.
Chaljub E. Spectral element modelling of threedimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core.
Geophys. J. Int,2004,158(1):131-141
|
CSCD被引
8
次
|
|
|
|
17.
Komatitsch D. The spectral-element method, Beowulf computing, and global seismology.
Science,2002,298(5599):1737-1742
|
CSCD被引
37
次
|
|
|
|
18.
Komatitsch D. Simulation of anisotropic wave propagation based upon a spectral element method.
Geophysics,2000,65(4):1251-1260
|
CSCD被引
32
次
|
|
|
|
19.
Komatitsch D. The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures.
Bull. Seismol. Soc. Am,1998,88(2):368-392
|
CSCD被引
121
次
|
|
|
|
20.
Newmark N M. A method of computation for structural dynamics.
ASCE Journal of the Engineering Mechanics Division,1959:67-94
|
CSCD被引
270
次
|
|
|
|
|