海量遥感数据的高性能地学计算应用与发展分析
Recent Developments in High Performance GeoComputation for Massive Remote Sensing Data
查看参考文献58篇
文摘
|
航空及航天遥感器的快速发展,使得多源、多时空分辨率的遥感数据成TB级增长,对海量遥感数据的高性能计算与处理提出了更高的要求。据此,当前的遥感应用已经吸收了新型硬件架构计算、集群计算和分布式计算等高性能计算领域的最新技术。本文针对高性能计算处理海量遥感数据的效率问题,分别从分布式并行遥感文件系统和高性能遥感地学计算模式两个方面来论述该问题的研究进展;在此基础上,列举了当前具有代表性的集群和分布式遥感计算平台/系统,并结合具体实验工作,详细阐述了遥感高性能计算平台gDos-IPM(Geospatial Data Operation System-Image Processing Machine)的设计思路;最后总结了高性能遥感地学计算的发展趋势。 |
其他语种文摘
|
As the amount of remote sensing data is sharply increasing within the continuing development in remote sensors, the exploitation of massive amount of remote sensing data is booming in recent years. Therefore, the computational problems in the applications that involve the large collection of remotely sensed imagery processing, such as global climate change and hazard assessment, arise inevitably. On this point, high performance computing (HPC)-based patterns, including cluster computing, grid computing, cloud computing and computing with hardware such as field-programmable gate arrays (FPGA) and graphic processing units (GPU), are introduced to the applications that concern a huge amount of remote sensing data processing. This paper focuses on the state of the art coping with the challenges that emerge when the massive remote sensing data are processed by the HPC-based platforms. In particular, we review recent developments in the parallel file systems for storing the remote sensing data and high performance geocomputation. Specifically, the HPC-based paradigms delivered in this paper involve cluster-based platform, grid and cloud based environments. Further, the typical examples of the HPC-based platforms that process the massive remote sensing data, comprising the Pixel Factory, the Grid Processing on Demand (G-POD) and the Geospatial Data Operation System-Image Processing Machine (gDos-IPM), are discussed. And the gDos-IPM, a solution for the platform of high performance computing for remote sensing, is described in detail. The gDos-IPM, which integrates the computation and storage resources and involves GPUs, multicore processors and clusters, provides the remote sensing tools about preprocessing and information extraction for massive remote sensing data in the heterogeneous computing environment. Also, it supports a dynamic model for spatio-temporal data and multi-level parallel computing. At the end of this paper, we present a thoughtful view on the challenges of HPC for further remote sensing applications. |
来源
|
地球信息科学学报
,2013,15(1):128-136 【核心库】
|
关键词
|
并行文件系统
;
多核
;
图形处理器
;
集群
;
分布式计算
|
地址
|
中国科学院遥感应用研究所, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
地球物理学 |
基金
|
国家自然科学基金
;
国家科技支撑计划项目
|
文献收藏号
|
CSCD:4760561
|
参考文献 共
58
共3页
|
1.
骆剑承. 遥感信息图谱计算的理论方法研究.
地球信息科学学报,2009,11(5):664-669
|
CSCD被引
10
次
|
|
|
|
2.
李德仁. 论空天地一体化对地观测网络.
地球信息科学学报,2012,14(4):419-425
|
CSCD被引
48
次
|
|
|
|
3.
Guo H. Understanding global natural disasters and the role of earth observation.
International Journal of Digital Earth,2010,3(3):221-230
|
CSCD被引
3
次
|
|
|
|
4.
徐冠华.
全球变化研究与高性能计算,2011
|
CSCD被引
1
次
|
|
|
|
5.
Goodchild M F. Next-generation digital earth.
Proceedings of the National Academy of Sciences,2012,109(28):11088-11094
|
CSCD被引
25
次
|
|
|
|
6.
霍严梅. 并行文件系统研究综述.
小型微型计算机系统,2008,29(9):1631-1636
|
CSCD被引
3
次
|
|
|
|
7.
康俊锋.
云计算环境下高分辨率遥感影像存储与高效管理技术研究,2011
|
CSCD被引
11
次
|
|
|
|
8.
Park S. Parallel skyline computation on multicore architectures.
Proceedings of the 25th International Conference on Data Engineering, ICDE 2009, March 29 - April 2 2009,2009
|
CSCD被引
1
次
|
|
|
|
9.
.
ERDAS IMAGINE Brochure
|
CSCD被引
1
次
|
|
|
|
10.
.
OpenMP.org
|
CSCD被引
1
次
|
|
|
|
11.
Phillips R D. Hybrid image classification and parameter selection using a shared memory parallel algorithm.
Computers & Geosciences,2007,33(7):875-897
|
CSCD被引
5
次
|
|
|
|
12.
朱志文. 改进SIFT点特征的并行遥感影像配准.
遥感学报,2011,15(5):1024-1039
|
CSCD被引
11
次
|
|
|
|
13.
邹贤才. Open MP并行计算在卫星重力数据处理中的应用.
测绘学报,2010(6):636-641
|
CSCD被引
33
次
|
|
|
|
14.
靳海亮. 利用可编程GPU硬件进行大规模真实感地形绘制.
武汉大学学报:信息科学版,2010(2):143-146
|
CSCD被引
7
次
|
|
|
|
15.
罗岱. 基于GPU编程的地形可视化.
中国图象图形学报,2008,13(11):2244-2249
|
CSCD被引
6
次
|
|
|
|
16.
Setoain J. Parallel morphological endmember extraction using commodity graphics hardware.
Geoscience and Remote Sensing Letters, IEEE,2007,4(3):441-445
|
CSCD被引
5
次
|
|
|
|
17.
Sanchez S. Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units.
Concurrency and Computation: Practice and Experience,2011,23(13):1538-1557
|
CSCD被引
4
次
|
|
|
|
18.
Qin C Z. Parallelizing flow-accumulation calculations on graphics processing units-From iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm.
Computers & Geosciences,2012(43):7-16
|
CSCD被引
23
次
|
|
|
|
19.
陈帅. SAR图像压缩采样恢复的GPU并行实现.
电子与信息学报,2011,33(3):610-615
|
CSCD被引
5
次
|
|
|
|
20.
肖汉. 基于GPGPU的并行影像匹配算法.
测绘学报,2010(1):46-51
|
CSCD被引
27
次
|
|
|
|
|