城市尺度组分温度的ASTER数据遥感反演
Land Surface Component Temperature Retrieval for Urban Scale Based on ASTER Image
查看参考文献17篇
文摘
|
为了获取城市尺度组分温度,实现城市水热平衡的高精度反演,探索了一种多波段热红外遥感影像的城市尺度组分温度反演算法。算法选取了植被、土壤和不透水表面等3种组分,并且针对ASTER数据,利用线性混合像元分解方法获取像元平均比辐射率,以MODIS近红外数据估算大气水汽含量和大气透过率,采用牛顿迭代法获取大气平均温度,并用最小二乘原理获取地表组分温度。最后,应用长沙市区的实验影像进行了实验研究,通过纯净像元上组分温度反演结果与分裂窗算法反演结果的对比分析,以及组分温度反演结果与实测数据的对比分析,对算法的精度进行了验证,结果表明:(1)纯净像元上,组分温度反演结果与分裂窗算法反演结果具有较好的相关性,植被组分相关性最高,达0.9796,2种结果平均绝对偏差值为0.36℃;(2)组分温度反演结果与实测组分温度绝对偏差范围为0.2~1.4℃,植被组分温度与实测值偏差相对较小,不透水表面组分温度与实测值偏差相对最大。 |
其他语种文摘
|
Land surface component temperature has more significant physical meaning, and it reflects the actual distribution of temperature more significantly. Meanwhile, its retrieval algorithms have no need for hypothesis that components in pixels have the same temperature. Although the multi-angle retrieval algorithm of component temperature has become mature gradually, its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data. Therefore, based on the existing multi-band remote sensing data, access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing. In this paper, a new algorithm to retrieve land surface component temperature for urban area had been proposed. It took advantage of ASTER data, and evaluated mean emissivity of pixels based on linear spectral unmixing, retrieved atmospheric water vapor content from MODIS NIR bands, and used Newton's iterative method to obtain atmosphere average temperature. Finally, an experimental study of this algorithm had been conducted and the retrieval result had been validated using some measured data. The results showed that: (1) the results of component temperature retrieval algorithm and split window algorithm of pure pixels have high correlation coefficient and the correlation coefficient of vegetation is the highest; (2) compared with the measured data, biases of the retrieval result ranged between 0.2 and 1.4℃, and the vegetation component temperature among different components had the smallest bias value. |
来源
|
地球信息科学学报
,2012,14(5):658-665 【核心库】
|
关键词
|
组分温度
;
ASTER
;
热红外遥感;长沙
|
地址
|
中南大学地球科学与信息物理学院,中南大学空间信息技术与可持续发展研究中心, 长沙, 410083
|
语种
|
中文 |
ISSN
|
1560-8999 |
学科
|
大气科学(气象学);自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
湖南省自然科学基金
|
文献收藏号
|
CSCD:4661430
|
参考文献 共
17
共1页
|
1.
Heiple S. Using building energy simulation and geospatial modelling techniques to determine high-resolution building sector energy consumption profiles.
Energy and Buildings,2008,40:1426-1436
|
CSCD被引
10
次
|
|
|
|
2.
Myrup L D. A numerical model of the urban heat island.
Journal of Applied Meteorology,1969,16:1120
|
CSCD被引
1
次
|
|
|
|
3.
Yuan F. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery.
Remote Sensing of Environment,2007,106:375-386
|
CSCD被引
131
次
|
|
|
|
4.
Grimmond C S B. Turbulent heat fluxes in urban areas: Observations and a Local-scale Urban Meteorological Parameterization Scheme (LUMPS).
Journal of Applied Meteorology,2002,41:792-810
|
CSCD被引
33
次
|
|
|
|
5.
Qin Z. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region.
International Journal of Remote Sensing,2001,22:3719-3746
|
CSCD被引
307
次
|
|
|
|
6.
Sobrino J A. Land surface temperature retrieval from LANDSAT TM 5.
Remote Sensing of Environment,2004,90(4):434-440
|
CSCD被引
343
次
|
|
|
|
7.
Wang K C. Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites.
Remote Sensing of Environment,2009,113(7):1556-1565
|
CSCD被引
19
次
|
|
|
|
8.
Pinheiro A C T. Development of a daily long term record of NOAA14 AVHRR land surface temperature over Africa.
Remote Sensing of Environment,2006,103(2):153-164
|
CSCD被引
3
次
|
|
|
|
9.
范闻捷. 陆面组分温度的综合反演研究.
中国科学(D辑),2005,35(10):989-996
|
CSCD被引
3
次
|
|
|
|
10.
王奋勤. 矩阵表达与对象统计特性相结合的组分温度反演方法.
遥感学报,2004,8(2):102-106
|
CSCD被引
4
次
|
|
|
|
11.
宋小宁. 基于MODIS数据的组分温度反演研究.
中国矿业大学学报,2004,33(44):406-411
|
CSCD被引
10
次
|
|
|
|
12.
Mao K B. An RM-NN algorithm for retrieving land surface temperature and emissivity from EOS/MODIS data.
Journal of Geophysical Research,2007,112(21):1029-1045
|
CSCD被引
1
次
|
|
|
|
13.
历华. 利用多源遥感数据反演城市地表温度.
遥感学报,2007,11(6):891-897
|
CSCD被引
25
次
|
|
|
|
14.
郑文武. 基于混合像元分解模型的TM6/ETM+热红外波段地表比辐射率估算.
地理与地理信息科学,2010,26(3):2528
|
CSCD被引
1
次
|
|
|
|
15.
Kaufman Y J. Remote Sensing of Water Vapor in the Near IR from EOS/MODIS.
IEEE Transaction on Geosciences and Remote Sensing,1992,30(5):871-884
|
CSCD被引
118
次
|
|
|
|
16.
Li J. Simultaneous non-linear retrieval of atmospheric temperature and absorbing constituent profiles from satellite infrared sounder radiances.
Adv. Atmos. Sci,1994,11:128-138
|
CSCD被引
6
次
|
|
|
|
17.
赵强. 利用MODIS红外资料反演大气参数以及表层温度的研究.
武汉大学学报·信息科学版,2009,34(4):400-403
|
CSCD被引
6
次
|
|
|
|
|