矮嵩草草甸植物群落数量特征对模拟增温的响应
Responses of Quantity Characteristics of Plant Community to Simulating Warming in Alpine Kobresia humilis Meadow Ecosystem
查看参考文献51篇
文摘
|
在5个(A~E)直径不同的开顶式增温小室(OTCs)环境条件下,通过连续5年(2002~2006)的野外试验,分析了植物生长季矮嵩草草甸植物群落地上部分生物量、平均高度、盖度对模拟增温的响应.结果表明:(1)开顶式增温小室能够有效改变微气候环境,室内气温比室外增加0.24~3.41℃,其增温幅度与温室面积大小呈显著负相关(r=-0.993 1~*).(2)随着试验时间的持续,各温室植物群落地上部分生物量均逐渐升高,第1年以温室B略高 (202.01 g/m~2),而第5年以温室A最高(414.56 g/m~2)且显著高于其它处理和对照(P<0.05).(3)植物群落平均高度在同一温室呈逐年增加的趋势,第5年显著高于其它年份(P<0.05);而不同温室间的植物群落平均高度随着室内温度的增高而逐渐显著增加.(4)植物群落总盖度呈逐年上升的趋势,至第5年已接近或达到100%;各温室间分盖度之和无显著差异(P>0.05),而其年际间变化差异极显著(P<0.001),2004~2006年分盖度之和均极显著高于2002和2003年,而2003年又显著高于2002年.可见,随着温室气温的逐渐增加,矮嵩草草甸植物群落地上部分生物量、平均高度、盖度均表现为逐渐上升的趋势 |
其他语种文摘
|
We analyzed biomass, average height, coverage of the plant community of Kobresia humilis meadow during plant growing season to simulate environmental temperature change during 5 years by using different sizes open-topped chambers (OTCs). The major research result showed that:OTCs could effectively change micro-climate environment, with an obvious temperature rising ranging from 0. 24 to 3. 41℃. In the 1st year , the greatest aboveground biomass was in chamber B(202. 01 g/m~2), the biomass of chamber A was the greatest one(414. 56 g/m~2) in the 5th year, and the analysis showed that the biomasses were obviously greater than those of other treatments (P<0. 05). The change of average community height was comparatively more obvious, and it showed an annually rising trends in the same chamber; The result showed that the average plant community heights in 2006 were significantly greater than that of other years (P<0. 05). Total community coverage showed an annually increasing trends too, and in the last year of the experiments, the total coverage approached or reached 100%. The sum of total species coverage in different treatment chambers have not obvious differences (P>0. 05) , while the differences of the sum of total species coverage between different years are significantly different (P<0. 001) ;Duncan's new multiple range test reveals that:the sum of partial coverage of 2004 to 2006 are significantly greater than those of 2002 and 2003. Moreover, that of 2003 are significantly greater than that of 2002. These results revealed that quantity characteristics of plant community may be increased with temperature rising |
来源
|
西北植物学报
,2010,30(5):995-1003 【核心库】
|
关键词
|
矮嵩草草甸
;
植物群落
;
模拟增温
;
响应
|
地址
|
中国科学院西北高原生物研究所, 西宁, 810001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-4025 |
学科
|
植物学 |
基金
|
国家“十五”科技攻关重大项目
;
国家自然科学重点基金项目
|
文献收藏号
|
CSCD:3941483
|
参考文献 共
51
共3页
|
1.
MITCHELL J F B. Equilibrium climate change.
Climate change, the IPCC scientific assessment,1990:131-172
|
CSCD被引
2
次
|
|
|
|
2.
刘建国.
当代生态学博论,1992:369-380
|
CSCD被引
5
次
|
|
|
|
3.
CHAPIN F S. Individualistic growth responses of tundra plant species to environmental manipulations in the field.
Ecology,1985,66:564-576
|
CSCD被引
19
次
|
|
|
|
4.
WOOKEY P A. Comparative responses of phenology and reproductive development to simulated environmental change in sub-arctic and high arctic plants.
Oikos,1993,67:490-502
|
CSCD被引
11
次
|
|
|
|
5.
HAVSTROM M. Differential growth responses of Cassiope teagona, an arctic dwarf-shrub, to environmental perturbations among three contrasting high- and subarctic sites.
Oikos,1993,66:389-402
|
CSCD被引
18
次
|
|
|
|
6.
PARSONS A N. Growth responses of four sub-arctic dwarfshrub to simulated environmental change.
Ecology,1994,82:307-318
|
CSCD被引
1
次
|
|
|
|
7.
PRESS M C. Responses of a subarctic dwarf shrub heath community to simulated environmental change.
Ecology,1998,86:315-327
|
CSCD被引
1
次
|
|
|
|
8.
RODINSON C H. Responses of plant litter decomposition and nitrogen mineralization to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath.
Oikos,1995,74:503-512
|
CSCD被引
1
次
|
|
|
|
9.
JONASSON S. In situ mineralization of nitrogen and phosphorus of arctic soils after perturbations simulating climate change.
Oecologia,1993,95:179-186
|
CSCD被引
11
次
|
|
|
|
10.
KORNER C H. Response of alpine vegetation to global climate change.
International Conference on Landscape Ecological Impact of Climate Chance. Lunteren,The Netherlands, Catena verlag. Supplement,1992:85-96
|
CSCD被引
1
次
|
|
|
|
11.
张新时.
全球变化与生态系统,1994:17-26
|
CSCD被引
13
次
|
|
|
|
12.
JULIA A K. Experimental warming causes large and rapid species loss, dampened by simulated grazing,on the Tibetan plateau.
Ecology Letters,2004,7:1170-1179
|
CSCD被引
148
次
|
|
|
|
13.
周华坤. 模拟增温效应对矮嵩草草甸影响的初步研究.
植物生态学报,2000,24(5):547-553
|
CSCD被引
88
次
|
|
|
|
14.
赵建中. 模拟增温效应对矮嵩草生长特征的影响.
西北植物学报,2006,26(12):2533-2539
|
CSCD被引
17
次
|
|
|
|
15.
DRAKE B G. An open chamber for field studies of elevated atmospheric CO_2 concentration on salt marsh vegetation.
Functional Ecology,1989,3:363-371
|
CSCD被引
5
次
|
|
|
|
16.
GRAGLIA E. Effects of shading, nutrient application and warming on leaf growth and shoot densities of dwarf shrubs in two arctic alpine plant communities.
Ecoscience,1997,4:191-198
|
CSCD被引
1
次
|
|
|
|
17.
HOBBIE S. The response of tundra plant biomass, aboveground production, nitrogen, and CO_2 flux to experimental warming.
Ecology,1998,79:1526-1544
|
CSCD被引
18
次
|
|
|
|
18.
MOLAU U. Tundra plant responses to experimental and natural temperature changes.
Mem. Natl. Inst. Polar Res,2001,54:445-466
|
CSCD被引
1
次
|
|
|
|
19.
RUSTAD L E. Meta-analysis of the responses of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming.
Oecologia,2001,126:543-562
|
CSCD被引
230
次
|
|
|
|
20.
CALLAGHAN T V. Implications for changes in arctic plant biodiversity from environmental manipulation experiments.
Ecological Studies,1995,113:151-166
|
CSCD被引
1
次
|
|
|
|
|