|
基于原位观测的泡沫金属细观与宏观压缩实验研究
On the Mesoscopic and Macroscopic Compression Tests of Metallic Foams Based on In Situ Observation
查看参考文献9篇
文摘
|
采用原位观测的方法研究了脆性泡沫铝材料在压缩载荷下细观与宏观断裂破坏规律和吸能机理。针对多孔泡沫金属材料提出一种细观原位加载实验方法,采用特别设计与制备的试件,在S570扫描电镜下研究了特定胞孔在压缩过程中孔壁的失效顺序和破坏规律,并揭示了能量吸收的细观机理。对块体材料的宏观压缩实验表明,脆性泡沫铝是以多个断裂带的形式破坏。研究发现,孔壁缺陷和胞孔形态缺陷是诱发断裂带形成与发展的重要因素。依据尺寸效应对细观与宏观实验下泡沫铝的性能进行了比较。 |
其他语种文摘
|
The failure regularity and energy absorption mechanism of brittle Al alloy foam materials under compression loading were tested in both mesoscopic and macroscopic scale.An in situ observation method in the mesoscopic scale was proposed for porous metallic foams.With the specially designed and machined samples,the failure sequence and fracture behaviour of the specific cell were studied with the aid of S570 scanning electron microscope,and the energy absorption mechanism was revealed.Macroscopic compression tests for bulk Al foams show that cells fractured into multiple bands.It was found that defects in cell wall and cell morphology are important factors for fracture bands initiation and developing.Considering the size effects,the mechanical properties obtained from respective mesoscopic and macroscopic tests were compared. |
来源
|
实验力学
,2007,22(6):617-624 【核心库】
|
关键词
|
泡沫金属
;
原位观测实验
;
压缩
;
能量吸收
|
地址
|
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4888 |
学科
|
建筑科学 |
基金
|
国家自然科学基金
;
中国科学院力学研究所非线性力学国家重点实验室开放课题基金
|
文献收藏号
|
CSCD:3111767
|
参考文献 共
9
共1页
|
1.
Gibson L J.
Cellular solids:structure and properties,1997
|
CSCD被引
258
次
|
|
|
|
2.
McDonald S A. Characterization of the three-dimensional structure of a metallic foam during compressive deformation.
Journal of Microscopy,2006,223:150-158
|
CSCD被引
5
次
|
|
|
|
3.
Markaki A E. The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams.
Acta Materialia,2001,49:1677-1686
|
CSCD被引
18
次
|
|
|
|
4.
卢子兴. 聚碳酸酯微孔泡沫塑料的拉伸力学性能及失效机理分析.
中国塑料,2003,17(1):39-43
|
CSCD被引
4
次
|
|
|
|
5.
Motz C. Fracture behaviour and fracture toughness of ductile closed cell metallic foams.
Acta Materialia,2002,50:2013-2033
|
CSCD被引
6
次
|
|
|
|
6.
Onck P R. Size effects in ductile cellular solids. Part I:modeling.
International Journal of Mechanical Sciences,2001,43:681-699
|
CSCD被引
48
次
|
|
|
|
7.
Olurin O B. Deformation and fracture of aluminium foams.
Materials Science and Engneering a-Structural Materials Properties Microstructure and processing,2000,291:136-146
|
CSCD被引
9
次
|
|
|
|
8.
Min Wang. Internal microstructure evolution of aluminum foams under compression.
Materials Research Bulletin,2006,41:1949-1958
|
CSCD被引
3
次
|
|
|
|
9.
Song H W. Tobota A. Partition energy absorption of axially crushed aluminum foam-filled hat sections.
International Journal of Solids and Structures,2005,42:2575-2600
|
CSCD被引
13
次
|
|
|
|
|
|