|
化学反应和球面聚心爆轰波的相互作用
Interaction Between Chemical Reactions and Imploding Detonation Waves
查看参考文献13篇
文摘
|
考察球面爆轰波聚心传播过程中,波阵面附近压力和温度不断升高引起化学反应进程的改变;对比氢氧可燃气体与氮气的数值模拟结果,分析化学反应对波面温度和压力的影响,从而考察Zeldovich理论预测聚心爆轰波后参数的精确性.数值结果表明,爆轰波聚心传播初期,放热的燃烧反应对波后热力学参数起主导作用;传播后期,波阵面趋近于对称中心时,吸热的气体解离反应变得非常活跃,解离反应对后期的汇聚压力影响不大,但会在很大程度上限制汇聚温度的升高. |
其他语种文摘
|
Numerical simulation of spherically imploding detonation waves in hydrogen-oxygen is carried out in an elementary chemical reaction model.Compared with numerical results of imploding shock waves in nitrogen,the discrepancies of gas dynamic characteristics between shock and detonation waves are investigated during implosion.The effect of chemical reactions,combustion and dissociation on detonation waves is revealed.As the wave fronts converge toward the center of symmetry,the front pressures at different radii are almost the same in the two cases.However the front temperatures are different.The temperature increases more rapidly in nitrogen than in hydrogen-oxygen mixture.Higher temperature is reached near the focal point in nitrogen due to its higher dissociation temperature.The energy released at the wave front is negligible in predicting pressure,while it needs to be considered in predicting temperature. |
来源
|
计算物理
,2007,24(3):301-306 【核心库】
|
关键词
|
聚心爆轰波
;
基元反应模型
;
高温解离效应
|
地址
|
1.
北京应用物理与计算数学研究所, 北京, 100088
2.
中国科学院力学研究所, 中科院高温气体动力学重点实验室, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-246X |
学科
|
力学 |
基金
|
国家自然科学基金
;
中国工程物理研究院科学技术基金
|
文献收藏号
|
CSCD:2860826
|
参考文献 共
13
共1页
|
1.
Terao K. Spherically imploding detonation waves initiated by a two-step divergent detonation.
Shock Waves,1995,4:187-193
|
CSCD被引
2
次
|
|
|
|
2.
Zeldovich Y B. Converging cylindrical detonation wave.
Sov Phys JETP,1959,36:550
|
CSCD被引
1
次
|
|
|
|
3.
Gudedey G. Powerful spherical and cylindrical compression shocks in the neighborhood of the center of the sphere and of the cylinder axis.
Luftfahrtforsch,1942,19:302-312
|
CSCD被引
1
次
|
|
|
|
4.
Terao K. Experimental study on spherically imploding detonation waves.
Shock Waves,1991,1:27-34
|
CSCD被引
1
次
|
|
|
|
5.
Lee J H. Cylindrical imploding shock waves.
Phys Fluids,1965,8(12):2148-2152
|
CSCD被引
2
次
|
|
|
|
6.
DeVore C R. The stability of imploding detonations in the geometrical shock dynamics(CCW)model.
Physics of Fluids,1992,4(4):835-844
|
CSCD被引
1
次
|
|
|
|
7.
Li H. A modified CCW theory for detonation waves.
Combustion and Flame,1998,113:1-12
|
CSCD被引
6
次
|
|
|
|
8.
Jiang Zonglin. Dispersion conditions for non-oscillatory shock capturing schemes and its applications.
Computational Fluid Dynamics J,1995,4:137-150
|
CSCD被引
27
次
|
|
|
|
9.
Bonnie J McBride.
NASA Glenn coefficients for calculating thermodynamic properties of individual species,NASA/TP-2002-211556,2002
|
CSCD被引
1
次
|
|
|
|
10.
Chang Lina. A general form of the dispersion-controlled dissipative scheme and its application in detonation problem.
Chinese J Comput Phys,2005,22(3):189-196
|
CSCD被引
1
次
|
|
|
|
11.
Chang Lina. Numefical investigations on propagation of spherically imploding gas detonation.
Chinese Journal of Theoretical and Applied Mechanics,2006,38(3):296-301
|
CSCD被引
1
次
|
|
|
|
12.
Fickett W.
Detonation,1979:91
|
CSCD被引
1
次
|
|
|
|
13.
Stefan Selle. Transport coefficients of reacting air at high temperatures.
AIAA 2000-0211,38th Aerospace Sciences Meeting & Exhibit,2000
|
CSCD被引
1
次
|
|
|
|
|
|