多孔材料填充薄壁结构吸能的相互作用效应
INTERACTION EFFECT IN ENERGY ABSORPTION OF POROUS MATERIAL FILLED THIN:WALLED STRUCTURE
查看参考文献12篇
文摘
|
研究多孔材料填充薄壁结构的相互作用效应产生的机理,并建立了表征模型.以泡沫铝填充帽形结构为例,发现压溃的填充物分为致密区、过致密区和未变形区3个区域.基于理想可压缩假设建立了填充多孔材料分析模型,获得各区域体积变化和等效应变等关系;结合薄壁结构超叠缩单元模型,对填充结构各组分的能量吸收进行了拆分.研究表明,薄壁结构的吸能略有增加,多孔材料的吸能增加40%左右.过致密区的形成是相互作用效应的主要原因. |
其他语种文摘
|
The mechanism of “interaction effect” raised in porous material filled thin-walled structure is studied, and quantitative partition in energy absorption is reached with the proposed model in this paper. Taking aluminum foam filled hat section as example, we found three characteristic regions in the crushed foam filler, i.e., densified region, extremely densified region and undeformed region. An analytical model according to the experimental observation was built to find the volume reduction and volumetric strain in each region of the crushed porous material filler, based on the perfectly compressible assumption. Combining with the superfolding element model for thin-walled hat structures, the contribution of each component of the filled structure, i.e., hat section, porous filler; densified region and extremely densified region to the overall energy absorption was quantitatively partitioned. The study shows that little increase in energy absorption is found in the thin-walled structure, while the augmentation in porous material filler is about 40%. The extremely densified region accounts for mainly to the interaction effect. |
来源
|
力学学报
,2005,37(6):697-703 【核心库】
|
关键词
|
多孔材料
;
薄壁结构
;
相互作用
;
能量吸收
;
耐撞性
|
地址
|
1.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100080
2.
清华大学, 汽车安全与节能国家重点实验室, 北京, 100084
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家自然科学基金
;
中国科学院力学研究所非线性力学国家重点实验室开放课题基金
|
文献收藏号
|
CSCD:2149111
|
参考文献 共
12
共1页
|
1.
Miller R. A continuum plasticity model for the constitutive and indentation behaviour of foamed metals.
International Journal of Mechanical Sciences,2000,42:729-754
|
CSCD被引
24
次
|
|
|
|
2.
杜星文. 圆柱壳冲击动力学及耐撞性设计.
圆柱壳冲击动力学及耐撞性设计,2004
|
CSCD被引
18
次
|
|
|
|
3.
Santosa SP. Experimental and numerical studies of foam-filled sections.
International Journal of Impact Engineering,2000,24:509-534
|
CSCD被引
52
次
|
|
|
|
4.
Hanssen AG. Static crushing of square aluminium extrusions with aluminium foam filler.
International Journal of Mechanical Sciences,1999,41:967-993
|
CSCD被引
14
次
|
|
|
|
5.
Hanssen AG. Bending of square aluminium extrusions with aluminium foam filler.
Acta Mechanica,2000,142:13-31
|
CSCD被引
12
次
|
|
|
|
6.
Hanssen AG. Optimum design for energy absorption of square aluminium columns with aluminium foam filler.
International Journal of Mechanical Sciences,2001,43:153-176
|
CSCD被引
8
次
|
|
|
|
7.
Chen WG. Experimental and numerical study on bending collapse of aluminum foam-filled hat profiles.
International Journal of Solids and Structures,2001,38:7919-7944
|
CSCD被引
4
次
|
|
|
|
8.
Gibson LJ. Mechanical behavior of metallic foams.
Annual Review of Materials Science,2000,30:191-227
|
CSCD被引
31
次
|
|
|
|
9.
Abramowicz W. Axial crushing of foam-filled columns.
International Journal of Mechanical Sciences,1988,30:263-271
|
CSCD被引
11
次
|
|
|
|
10.
Wierzbicki T. On the crushing mechanics of thin-walled structures.
Journal of Applied Mechanics,1983,50:727-733
|
CSCD被引
97
次
|
|
|
|
11.
White MD. A theoretical analysis for the quasi-static axial crushing of top-hat and double-hat thin-walled sections.
International Journal of Mechanical Sciences,1999,41:209-233
|
CSCD被引
18
次
|
|
|
|
12.
Abramowicz W. Axial crushing of multicorner sheet metal columns.
Journal of Applied Mechanics,1989,56:113-120
|
CSCD被引
26
次
|
|
|
|
|