帮助 关于我们

返回检索结果

海岸工程变化的BJ-1遥感监测分析
The Comparative Study of the Change Detection in Coastal Engineering Using BJ-1 Small Satellite Remote Sensing Data

查看参考文献15篇

文摘 海岸工程对海岸带经济发展和生态环境影响很大。随着海岸工程建设迅猛的发展,采用遥感的方法对海岸工程变化进行遥感监测显得尤为重要。本文以北京一号小卫星(BJ-1)资料为数据源,利用多种变化监测的方法对天津港和曹妃甸港区2006年和2010年的海岸工程变化进行监测。结果显示,波段替换法与SVM分类相结合的方法在2个重点研究区域精度最高,其总体精度和Kappa系数分别为92.35%和0.7902;面向对象的方法精度和稳定性其次,其总体精度和Kappa系数分别为91.77%和0.7732。
其他语种文摘 The coastal engineering exerts a great impact on the economic development and ecological environment of the seacoast.Thus,coastal engineering monitoring is a focus in coast zone remote sensing and monitoring.Since the 1980s,satellite remote sensing has become an indispensable technique in detecting the dynamic changes of coastal engineering.The accuracy of changes in coastal engineering is determined by the applicability of data obtained from remote sensing system and the feasibility of the methods in detecting the changes.As a satellite developed by China,the BJ-1 small satellite has already obtained numerous achievements in environment and disaster monitoring,urban management and construction and national land resource surveying.However,little has been investigated concerning the utilization of BJ-1 small satellite in monitoring the coast engineering.We compared various typical detection methods,and summarized a highly accurate and stable method in monitering the costal engineering with BJ-1 small satellite remote sensing data.Different detection methods were applied to investigate the changes in 2 key areas-Tianjin Port and Caofeidian Port costal engineering from 2006 to 2010 based on the characteristics of BJ-1 small satellite data,and evaluated the detected results.Our findings showed that among the detecting methods with BJ-1 remote sensing data,the maximum precision was obtained when waveband substitution technique was combined with SVM classification to detect the changes in costal engineering.The second precisest and stablest method was object-oriented analysis.These results indicate that,BJ-1 remote sensing data meet the requirements for accuracy in different costal engineering monitoring.Meanwhile,combination of waveband substitution and SVM classification technique,as well as object-oriented analysis,has the highest accuracy and stability in different costal engineering monitoring.
来源 地球信息科学学报 ,2012,14(4):540-547 【核心库】
关键词 “北京一号”小卫星数据 ; 遥感 ; 变化监测 ; 海岸工程
地址

中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京, 100101

语种 中文
ISSN 1560-8999
学科 测绘学;海洋学
基金 国家科技支撑计划项目
文献收藏号 CSCD:4611402

参考文献 共 15 共1页

1.  刘宝银. 中国海岸带与海岛遥感调查--原则方法系统,2005 CSCD被引 1    
2.  左丽君. 渤海海岸带地区土地利用时空演变及景观格局响应. 遥感学报,2011(3):604-620 CSCD被引 18    
3.  Muttitanon W. Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data. International Journal of Remote Sensing,2005,26(11):2311-2323 CSCD被引 6    
4.  Berberoglu S. Assessing different remote sensing techniques to detect land use/cover changes in the eastern Mediterranean. International Journal of Applied Earth Observation and Geoinformation,2008,11(1):46-53 CSCD被引 8    
5.  杨晓梅. 海岸带遥感综合技术与实例研究,2005 CSCD被引 12    
6.  童庆禧. BJ-1小卫星及其数据应用. 航天器工程,2007(2):1-5 CSCD被引 13    
7.  张云. 曹妃甸港与天津港协同发展构想. 交通企业管理,2009(2):9-10 CSCD被引 1    
8.  张朝阳. 基于色差的遥感影像海岸线提取. 测绘学院学报,2005(4):259-262 CSCD被引 13    
9.  Lu D. Change detection techniques. International Journal of Remote Sensing,2004,25(12):2365-2407 CSCD被引 116    
10.  刘鹰. 土地利用动态遥感监测中变化信息提取方法的研究. 遥感信息,1999(4):21-24 CSCD被引 11    
11.  胡堃. 基于Otsu阈值分割算法的变化监测. 科协论坛,2009(6):96 CSCD被引 3    
12.  李秦. 最优分割尺度下的多层次遥感地物分类实验分析. 地球信息科学学报,2011,13(3):409-417 CSCD被引 30    
13.  许效. 面向对象图像识别的地学理解方法的优化与应用. 地球信息科学学报,2010,12(6):863-869 CSCD被引 1    
14.  邓书斌. ENVI遥感图像处理方法,2010 CSCD被引 71    
15.  Foody G M. Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sensing of Environment,2009,113(8):1658-1663 CSCD被引 10    
引证文献 1

1 宫萌 1974-2017年山东省大陆海岸围填海动态变化分析 地球信息科学学报,2019,21(12):1911-1922
CSCD被引 2

显示所有1篇文献

论文科学数据集

1. 青藏高原湖泊动态数据集(V1.0)(1984-2016)

数据来源:
国家青藏高原科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号