Improve Robustness and Accuracy of Deep Neural Network with L_(2,∞) Normalization
查看参考文献25篇
文摘
|
In this paper,the L_(2,∞) normalization of the weight matrices is used to enhance the robustness and accuracy of the deep neural network (DNN) with Relu as activation functions.It is shown that the L_(2,∞) normalization leads to large dihedral angles between two adjacent faces of the DNN function graph and hence smoother DNN functions,which reduces over-fitting of the DNN.A global measure is proposed for the robustness of a classification DNN,which is the average radius of the maximal robust spheres with the training samples as centers.A lower bound for the robustness measure in terms of the L_(2,∞) norm is given.Finally,an upper bound for the Rademacher complexity of DNNs with L_(2,∞) normalization is given.An algorithm is given to train DNNs with the L_(2,∞) normalization and numerical experimental results are used to show that the L_(2,∞) normalization is effective in terms of improving the robustness and accuracy. |
来源
|
Journal of Systems Science and Complexity
,2023,36(1):3-28 【核心库】
|
DOI
|
10.1007/s11424-022-1326-y
|
关键词
|
Deep neural network
;
global robustness measure
;
L_(2,∞) normalization
;
over-fitting
;
Rademacher complexity
;
smooth DNN
|
地址
|
1.
Academy of Mathematics and Systems Science,Chinese Academy of Sciences, Beijing, 100190
2.
University of Chinese Academy of Sciences, Beijing, 100049
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1009-6124 |
学科
|
自动化技术、计算机技术 |
基金
|
supported by NKRDP
;
国家自然科学基金
|
文献收藏号
|
CSCD:7551062
|
参考文献 共
25
共2页
|
1.
LeCun Y. Deep learning.
Nature,2015,521(7553):436-444
|
CSCD被引
3544
次
|
|
|
|
2.
Voulodimos A. Deep learning for computer vision: A brief review.
Comput. Intel. and Neurosc,2018
|
CSCD被引
1
次
|
|
|
|
3.
Socher R. Deep Learning for NLP (without magic).
Tutorial Abstracts of ACL'2012,2012:5
|
CSCD被引
1
次
|
|
|
|
4.
Leshno M. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function.
Neural Networks,1993,6(6):861-867
|
CSCD被引
74
次
|
|
|
|
5.
Goodfellow I.
Deep Learning,2016
|
CSCD被引
710
次
|
|
|
|
6.
Molchanov D. Variational dropout sparsifies deep neural networks.
arXiv: 1701.05369,2017
|
CSCD被引
1
次
|
|
|
|
7.
Srivastava N. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research,2014,15:1929-1958
|
CSCD被引
1216
次
|
|
|
|
8.
Wan L. Regularization of neural networks using DropConnect.
ICML'13,2013,28:III-1058-III-1066
|
CSCD被引
1
次
|
|
|
|
9.
Ioffe S. Batch normalization: Accelerating deep network training by reducing internal covariate shift.
arXiv: 1502.03167,2015
|
CSCD被引
68
次
|
|
|
|
10.
Montufar G. On the number of linear regions of deep neural networks.
NIPS'2014,2014
|
CSCD被引
1
次
|
|
|
|
11.
Zhang X Y. Towards robust pattern recognition: A review.
Proc. of the IEEE,2020,108(6):894-922
|
CSCD被引
9
次
|
|
|
|
12.
Zheng S. Improving the robustness of deep neural networks via stability training.
CVPR'16,2016:4480-4488
|
CSCD被引
1
次
|
|
|
|
13.
Meng D. Improve robustness of sparse PCA by L1-norm maximization.
Pattern Recognition,2012,45:487-497
|
CSCD被引
12
次
|
|
|
|
14.
Hinton G. Distilling the knowledge in a neural network.
arXiv: 1503.02531,2015
|
CSCD被引
80
次
|
|
|
|
15.
Yu L. Robust and information-theoretically safe bias classifier against adversarial attacks.
arXiv: 2111.04404,2021
|
CSCD被引
1
次
|
|
|
|
16.
Yu L. Adversarial parameter attack on deep neural networks.
arXiv: 2203.10502,2022
|
CSCD被引
1
次
|
|
|
|
17.
Madry A. Towards deep learning models resistant to adversarial attacks.
arXiv: 1706.06083,2017
|
CSCD被引
27
次
|
|
|
|
18.
Lin W. Robustness verification of classification deep neural networks via linear programming.
CVPR'2019,2019:11418-11427
|
CSCD被引
1
次
|
|
|
|
19.
Carlini N. Towards evaluating the robustness of neural networks.
IEEE Symposium on Security and Privacy
|
CSCD被引
1
次
|
|
|
|
20.
Neyshabur B. Norm-based capacity control in neural networks.
COLT'15,2015:1376-1401
|
CSCD被引
1
次
|
|
|
|
|