基于搅拌摩擦的金属固相增材制造研究进展
Research progress of metal solid phase additive manufacturing based on friction stir
查看参考文献74篇
文摘
|
基于搅拌摩擦的固相增材制造是大型轻质合金构件成形制造的新技术,已成为国内外先进成形制造领域研究的热点之一。本文对目前国内外基于搅拌摩擦的金属固相增材制造技术及其相关工艺机理的研究现状进行了分析和总结。常见的基于搅拌摩擦的固相增材制造技术可分为三类:基于搅拌摩擦搭接焊原理,使板材逐层堆积,从而获得增材构件的搅拌摩擦增材制造(friction stir additive manufacturing,FSAM)技术;采用中空搅拌头,通过添加剂(粉末或丝材)进行固相搅拌摩擦沉积的增材制造(additive friction stir deposition,AFSD)技术;采用消耗型棒材,通过棒材的摩擦表面处理,形成增材层的摩擦表面沉积增材制造(friction surfacing deposition additive manufacturing,FSD-AM)技术。重点分析了金属材料基于搅拌摩擦的固相增材制造技术的国内外研究与应用现状,对比了三类基于搅拌摩擦的固相增材制造技术的特征及其工艺优缺点。最后指出增材工艺机理、形性协同控制、外场辅助工艺改型、新材料应用和人工智能优化是基于搅拌摩擦的固相增材制造技术未来研究的重点方向。 |
其他语种文摘
|
Solid phase additive manufacturing based on friction stir is a new technology for manufacturing of large lightweight alloy components,which has become one of the hot research topics in advanced manufacturing field at home and abroad.The research status of metal solid phase additive manufacturing technology based on friction stir and related process mechanism were analyzed and summarized.The solid phase additive manufacturing technology based on friction stir can be divided into three categories.One is friction stir additive manufacturing(FSAM),which is based on the principle of friction stir lap welding,the plates are stacked layer by layer.Another is additive friction stir deposition(AFSD)technology,which usually uses a hollow tool to conduct AFSD by additive powder or wire through the hollow.The third one is friction surfacing deposition additive manufacturing(FSD-AM)technology,which is based on the principle of friction surfacing by using a rotating consumable bar to deposit materials to form the designed components.The research and application status of solid phase additive manufacturing technology of metal materials based on friction stir were analyzed,and the characteristics,advantages and disadvantages of three kinds of solid phase additive manufacturing technology based on friction stir were compared.Finally,the future research direction of solid phase additive manufacturing technology based on friction stir was proposed, including revealing their process mechanism,integrated controlling of the formation and property of the AM components,modifying the process assisted with second energy,application of new materials and optimization with artificial intelligence,etc. |
来源
|
材料工程
,2022,50(1):1-14 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.000741
|
关键词
|
增材制造
;
固相增材制造
;
搅拌摩擦增材制造
;
搅拌摩擦沉积增材制造
;
摩擦表面沉积增材制造
|
地址
|
1.
山东大学, 材料液固结构演变与加工教育部重点实验室, 济南, 250061
2.
哈尔滨工业大学, 先进焊接与连接国家重点实验室, 哈尔滨, 150001
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金项目
;
哈尔滨工业大学先进焊接与连接国家重点实验室开放课题
|
文献收藏号
|
CSCD:7150532
|
参考文献 共
74
共4页
|
1.
卢秉恒. 增材制造技术———现状与未来.
中国机械工程,2020,31(1):19-23
|
CSCD被引
78
次
|
|
|
|
2.
郜庆伟. 铝合金增材制造技术研究进展.
材料工程,2019,47(11):32-42
|
CSCD被引
20
次
|
|
|
|
3.
Herzog D. Additive manufacturing of metals.
Acta Materialia,2016,117:371-392
|
CSCD被引
216
次
|
|
|
|
4.
Debroy T. Additive manufacturing of metallic components-process,structure and properties.
Progress in Materials Science,2018,92:112-224
|
CSCD被引
273
次
|
|
|
|
5.
王华明. 高性能大型金属构件激光增材制造:若干材料基础问题.
航空学报,2014,35(10):2690-2698
|
CSCD被引
210
次
|
|
|
|
6.
Yu H Z. Non-beam-based metal additive manufacturing enabled by additive friction stir deposition.
Scripta Materialia,2018,153:122-130
|
CSCD被引
10
次
|
|
|
|
7.
李文亚. 冷喷涂复合加工制造技术及其应用.
材料工程,2019,47(11):53-63
|
CSCD被引
14
次
|
|
|
|
8.
Srivastava A K. Friction stir additive manufacturing-an innovative tool to enhance mechanical and microstructural properties.
Materials Science and Engineering: B,2021,263:114832
|
CSCD被引
5
次
|
|
|
|
9.
Gopan V. Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes:a review.
CIRP Journal of Manufacturing Science and Technology,2021,32:228-248
|
CSCD被引
8
次
|
|
|
|
10.
Khodabakhshi F. Potentials and strategies of solid-state additive friction-stir manufacturing technology:a critical review.
Journal of Manufacturing Processes,2018,36:77-92
|
CSCD被引
13
次
|
|
|
|
11.
Yu H Z. Additive friction stir deposition:a deformation processing route to metal additive manufacturing.
Materials Research Letters,2021,9(2):71-83
|
CSCD被引
11
次
|
|
|
|
12.
李鹏. 金属超声波增材制造技术的发展.
航空制造技术,2016(12):49-55
|
CSCD被引
5
次
|
|
|
|
13.
Rathee S.
Friction based additive manufacturing technologies:principles for building in solid state,benefits,limitations,and applications,2018
|
CSCD被引
1
次
|
|
|
|
14.
Padhy G K. Friction stir based welding and processing technologies -processes, parameters, microstructures and applications: A review.
Journal of Materials Science & Technology,2018,34(1):1-38
|
CSCD被引
55
次
|
|
|
|
15.
石磊. 2195铝锂合金超声振动辅助搅拌摩擦焊接工艺研究.
材料工程,2021,49(5):122-129
|
CSCD被引
3
次
|
|
|
|
16.
马宗义. 镁合金搅拌摩擦焊接的研究现状与展望.
金属学报,2018,54(11):1597-1617
|
CSCD被引
10
次
|
|
|
|
17.
Palanivel S. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43alloy.
Materials & Design,2015,65:934-952
|
CSCD被引
25
次
|
|
|
|
18.
Palanivel S. Friction stir additive manufacturing:route to high structural performance.
JOM,2015,67(3):616-621
|
CSCD被引
11
次
|
|
|
|
19.
傅徐荣. 静轴肩搅拌摩擦增材制造2024铝合金的组织特征.
中国有色金属学报,2019,29(8):1591-1598
|
CSCD被引
5
次
|
|
|
|
20.
Phillips B J. Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al-Mg-Si alloy fabricated by additive friction stir deposition.
Journal of Materials Processing Technology,2021,295:117169
|
CSCD被引
5
次
|
|
|
|
|