Structure properties and sintering densification of Gd_2Zr_2O_7 nanoparticles prepared via different acid combustion methods
查看参考文献29篇
文摘
|
Gadolinium zirconate (Gd_2Zr_2O_7) nanocrystals were prepared via two different combustion methods: citric acid combustion (CAC) and stearic acid combustion (SAC). The effects of the different preparation methods on the phase composition, microtopography, and sintering densification of the resulting Gd_2Zr_2O_7 nanopowders were investigated by thermal-gravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. The results indicated that both methods could produce Gd_2Zr_2O_7 nanopowders with an excellent defective fluorite structure. The reaction time was reduced by the SAC method, compared with the CAC method. The nanopowders synthesized by the two methods were different in grain size distribution. The resulting nanoparticle diameter was about 50 nm for CAC and 10 nm for SAC. After vacuum sintering, the sintered bodies also had a different relative density of about 93% and 98%, respectively. Thus the preparation of Gd_2Zr_2O_7 nanopowders by SAC was the first choice to achieve the desired sintering densification. |
来源
|
Journal of Rare Earths
,2015,33(2):195-201 【核心库】
|
DOI
|
10.1016/s1002-0721(14)60402-6
|
关键词
|
Gd_2Zr_2O_7 nanocrystals
;
citric acid combustion (CAC)
;
stearic acid combustion (SAC)
;
combustion method
;
X-ray diffraction techniques
;
sintering densification
;
rare earths
|
地址
|
1.
Northeastern University, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education);;Key Laboratory for Advanced Ceramics and Application of Shenyang, Shenyang, 110819
2.
School of Material Science and Engineering, Shenyang University of Chemical Technology, Key Laboratory for Advanced Ceramics and Application of Shenyang, Shenyang, 110142
3.
Northeastern University, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Shenyang, 110819
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1002-0721 |
学科
|
冶金工业 |
文献收藏号
|
CSCD:5360884
|
参考文献 共
29
共2页
|
1.
Liu Z G. Effect of Ti substitution for Zr on the thermal expansion property of fluorite-type Gd_2Zr_2O_7.
Mater. Des,2009,30(5):3784
|
CSCD被引
6
次
|
|
|
|
2.
Liu Z G. Structure and thermal conductivity of Gd_2(Ti_xZr_(1-x))_2O_7 ceramics.
Mater. Lett,2008,62(3):4455
|
CSCD被引
6
次
|
|
|
|
3.
Liu Z G. Influence of ytterbium-and samarium-oxides codoping on structure and thermal conductivity of zirconate ceramics.
J. Eur. Ceram. Soc,2009,29(6):647
|
CSCD被引
15
次
|
|
|
|
4.
Xiang J Y. Synthesis kinetics and thermophysical properties of La_2Zr_(0.7)Ce_(0.3))_2O_7 ceramic for thermal barrier coatings.
J. Rare Earths,2012,30(3):228
|
CSCD被引
7
次
|
|
|
|
5.
Jacobson A J. Materials for solid oxide fuel cells.
Chem. Mater,2010,22(15):660
|
CSCD被引
47
次
|
|
|
|
6.
Liu Z G. Effect of Sm stubstitution for Gd on the electrical conductivity of fluorite-type Gd_2Zr_2O_7.
J. Power Sources,2008,185(5):876
|
CSCD被引
8
次
|
|
|
|
7.
Tong Y. Characterization and photocatalytic properties of Ln_2Zr_2O_7 (Ln=La, Nd, Sm, Dy, Er) nanocrystals by stearic acid method.
Solid State Sci,2008,10(5):1379
|
CSCD被引
7
次
|
|
|
|
8.
Devanathan R. Radiation tolerance of ceramics-insights from atomistic simulation of damage accumulation in pyrochlores.
Energy Environ. Sci,2010,3(9):1551
|
CSCD被引
6
次
|
|
|
|
9.
Weber W J. Plutonium immobilization and radiation effects.
Science,2000,289(2):2051
|
CSCD被引
27
次
|
|
|
|
10.
Mandal B P. Crucial role of the reaction conditions in isolating several metastable phases in a Gd-Ce-Zr-O system.
Inorg. Chem,2010,49(7):10415
|
CSCD被引
5
次
|
|
|
|
11.
Zinkevich M. Phase equilibria in the ZrO_2-GdO_(1.5) system at 1400-1700 oC.
J. Alloys Compd,2005,398(8):261
|
CSCD被引
2
次
|
|
|
|
12.
Lee Y H. Preparation and fluorite-pyrochlore phase transformation in Gd_2Zr_2O_7.
J. Alloys Compd,2009,487(4):595
|
CSCD被引
6
次
|
|
|
|
13.
Liu Z G. Structural evolution and thermophysical properties of (Sm_xGd_(1-x))_2Zr_2O_7 (0≤x≤1.0) ceramics.
J. Alloys Compd,2009,472(6):319
|
CSCD被引
12
次
|
|
|
|
14.
Sanjay Kumar N R. Pressure induced structural transformation of pyrochlore Gd_2Zr_2O_7.
Solid State Commun,2008,147(3):357
|
CSCD被引
6
次
|
|
|
|
15.
Zhang J M. Liquid-like phase formation in Gd_2Zr_2O_7 by extremely ionizing irradiation.
Appl. Phys,2009,105(7):113510
|
CSCD被引
4
次
|
|
|
|
16.
Zhang J M. Intrinsic structural disorder and radiation response of nanocrystalline Gd_2(Ti_(0.65)Zr_(0.35))_2O_7 pyrochlore.
J. Phys. Chem. C,2010,114(6):11810
|
CSCD被引
5
次
|
|
|
|
17.
Radhakrishnan A N. Influence of disorder-to-order transition on lattice thermal expansion and oxide ion conductivity in (Ca_xGd_(1-x))_2(Zr_(1-x)M_x)_2O_7 pyrochlore soid solutions.
Dalton Trans,2011,40(10):3839
|
CSCD被引
8
次
|
|
|
|
18.
Liu Z G. Preparation, characterization and electrical conductivity studies of NdYb_(1-x)Gd_xZr_2O_7 (0≤x≤1.0) ceramics.
Electrochim. Acta,2010,55(5):8466
|
CSCD被引
2
次
|
|
|
|
19.
Xia X L. Electrical properties of gadolinium-europium zirconate ceramics.
J. Am. Ceram. Soc,2010,93(7):1074
|
CSCD被引
4
次
|
|
|
|
20.
Moreno K J. Structural manipulation of pyrochlores: thermal evolution of metastable Gd_2(Ti_(1-y)Zr_y)_2O_7 powders prepared by mechanical milling.
J. Solid State Chem,2006,179(9):3805
|
CSCD被引
3
次
|
|
|
|
|