稀土镁合金强韧性设计与开发
Strengthening and Toughening Design and Development of Mg-Rare Earth Alloys
查看参考文献50篇
文摘
|
镁合金作为最轻质的结构材料,在电子产品及汽车工业领域具有广泛的应用前景。相比于非稀土镁合金,稀土镁合金具有强度高且高温性能好的优点,而成为研究热点之一。本文重点介绍了高稀土含量镁合金和低稀土含量镁合金的强韧化方法。高稀土含量的镁合金可以调控三角分布的棱柱面片状析出相β',阻碍位错滑移,提高合金强度。低稀土含量的镁合金可以采用表面机械研磨处理方法得到表面含有纳米晶中心含有孪晶的梯度组织,利用细晶强化和孪晶强化提高合金强度。 |
其他语种文摘
|
Magnesium alloys are the lightest structural alloys developed so far and have a great potential for lightweight applications, ranging from portable electronic devices to automobile parts. Comparing to Mg alloys containing no rare earth (RE),Mg-RE alloys attracted more and more attentions due to the higher strengths at both room temperature and elevated temperature. Strengthening methods for Mg alloys with high RE contents and low RE contents were introduced respectively in this paper. For Mg alloys with high RE contents, precipitates of β' lying in the triangular prismatic plates can impede dislocation slip effectively to enhance the strength of the alloy. For Mg alloys with low RE contents,the microstructure containing nano grains in the surface layer and twinning in the center can be obtained by surface mechanical attrition treatment. Thus the Mg alloy can be strengthened by both refinement strengthening of nano grains and twinning strengthening of RE segregated twin boundaries. |
来源
|
航空材料学报
,2017,37(1):18-25 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2016.100001
|
关键词
|
稀土镁合金
;
强化
;
析出相
;
纳米晶
;
孪晶
|
地址
|
上海交通大学, 金属基复合材料国家重点实验室, 上海, 200240
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:5921610
|
参考文献 共
50
共3页
|
1.
Polmear I J. Recent developments in light alloys.
Materials Transactions, JIM,1996,37(1):12-31
|
CSCD被引
45
次
|
|
|
|
2.
韩修柱. 等温锻造Mg-10Gd-2Y-0.5Zn-0.3Zr稀土镁合金组织性能.
航空材料学报,2015,35(6):8-13
|
CSCD被引
6
次
|
|
|
|
3.
鲁志龙. 不同冷却介质下多道次搅拌摩擦加工对AZ91镁合金组织和性能影响.
航空材料学报,2016,36(1):33-38
|
CSCD被引
7
次
|
|
|
|
4.
丁文江. 高性能镁合金研究及应用的新进展.
中国材料进展(Materials China),2010,29(8):37-45
|
CSCD被引
101
次
|
|
|
|
5.
何运斌. ZK60镁合金均匀化过程中的组织演变.
航空材料学报,2011,31(3):14-20
|
CSCD被引
6
次
|
|
|
|
6.
何上明.
Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究,2007
|
CSCD被引
30
次
|
|
|
|
7.
Shi X. Microstructure and mechanical properties of Mg-7Al-2Sn alloy processed by super vacuum die-casting.
Metall Mater Trans A,2013,44(10):4788-4799
|
CSCD被引
4
次
|
|
|
|
8.
Shi X. Twinning behavior and lattice rotation in a Mg-Gd-Y-Zr alloy under ballistic impact.
J Alloy Compd,2015,650:622-632
|
CSCD被引
5
次
|
|
|
|
9.
Shi X. Study on hydrogenation behaviors of a Mg-13Y alloy.
International Journal of Hydrogen Energy,2014,39(16):8303-8310
|
CSCD被引
1
次
|
|
|
|
10.
刘鹏. 稀土元素Y和Ce对热轧Mg-1.5Zn镁合金组织和室温成形性能的影响.
材料工程,2014(12):1-10
|
CSCD被引
8
次
|
|
|
|
11.
唐甜. Sn对时效态ZM61镁合金高温力学性能的影响.
材料工程,2016,44(11):9-15
|
CSCD被引
4
次
|
|
|
|
12.
Celotto S. TEM study of continuous precipitation in Mg-9 wt%Al-1 wt%Zn alloy.
Acta Mater,2000,48(8):1775-1787
|
CSCD被引
66
次
|
|
|
|
13.
Chen J. Effects of Sn addition on microstructure and mechanical properties of Mg-Zn-Al alloys.
J Alloy Compd,2008,461(1/2):209-215
|
CSCD被引
5
次
|
|
|
|
14.
Clark J B. Age hardening in a Mg-9 wt. % Al alloy.
Acta Metall,1968,16(2):141-152
|
CSCD被引
37
次
|
|
|
|
15.
Elsayed F R. Compositional optimization of Mg-Sn-Al alloys for higher age hardening response.
Mater Sci Eng A,2013,566:22-29
|
CSCD被引
15
次
|
|
|
|
16.
Luo A A. Solidification microstructure and mechanical properties of cast magnesium-aluminum-tin alloys.
Metall Mater Trans A,2012,43(1):360-368
|
CSCD被引
9
次
|
|
|
|
17.
Xiao W. Effects of Sn content on the microstructure and mechanical properties of Mg-7Zn-5Al based alloys.
Mater Sci Eng A,2010,527(26):7002-7007
|
CSCD被引
5
次
|
|
|
|
18.
Smola B. Structural aspects of high performance Mg alloys design.
Mater Sci Eng A,2002,324(1/2):113-117
|
CSCD被引
54
次
|
|
|
|
19.
Lorimer G W. Structure-property relationships in cast magnesium alloys.
Proceedings Magnesium Technology,1986
|
CSCD被引
2
次
|
|
|
|
20.
Vostr P. Microstructure evolution in isochronally heat treated Mg-Gd alloys.
Physica Status Solidi A,1999,175(2):491-500
|
CSCD被引
1
次
|
|
|
|
|