苹果炭疽叶枯病菌致病相关基因CgNVF1的功能初步分析
Functional analysis of the pathogenicity-related gene CgNVF1 in Colletotrichum gloeosporioides
查看参考文献21篇
文摘
|
苹果炭疽叶枯病是主要由胶孢炭疽菌( Colletotrichum gloeosporioides)引起的一种苹果重要叶部病害,严重威胁着苹果树的生长。本研究从构建的苹果炭疽叶枯病菌T-DNA突变体库中筛选获得一株致病力缺失的突变菌株A3083,采用hi- TAIL-PCR方法克隆了该突变体T-DNA插入位点的右翼序列;通过与胶孢炭疽菌基因组序列比对分析,发现T-DNA插入位点位于1个预测的CGGC5_9603基因内,并将该基因命名为CgNVF1。CgNVF1基因全长2 252 bp,含有2个内含子,编码709个氨基酸。CgNVF1定位于细胞质,在苹果炭疽叶枯病菌菌丝、分生孢子和附着胞中均有表达。通过构建CgNVF1敲除菌株和CgNVF1互补菌株,并结合表型分析,证实CgNVF1基因在苹果炭疽叶枯病菌附着胞形成及致病中具有重要的作用。 |
其他语种文摘
|
Glomerella leaf spot of apple ( GLSA) is mainly caused by Colletotrichum gloeosporioides,which has become a major apple leaf disease and threatens apple growth. A mutant strain A3083 that lost pathogenicity was obtained by screening the T -DNA insertional mutant library. Southern blot analysis indicated that A3083 contains a single copy of T-DNA. The T-DNA right flanking sequence of A3083 obtained by hiTAIL-PCR was aligned with the whole genome of C. gloeosporioides,which showed that the T-DNA is located in the coding region of a predicted gene CGGC5_9603. This gene was designated as CgNVF1,which is 2 252 bp in length, contains 2 introns and encodes 709 amino acids. Fluorescent signal showed that the fused protein CgNVF1-eGFP is distributed to the cytoplasm and expressed in all of the mycelium,conidium and appressorium. Phenotypic analysis of the CgNVF1 knockout mutant and the complementation strain indicated CgNVF1 is required for appressorium formation and pathogenicity in C. gloeosporioides. |
来源
|
植物病理学报
,2018,48(6):810-816 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000148
|
关键词
|
苹果炭疽叶枯病
;
围小丛壳菌
;
CgNVF1基因
;
表型分析
|
地址
|
1.
农业部园艺作物种质资源利用重点实验室, 农业部园艺作物种质资源利用重点实验室, 辽宁, 兴城, 125100
2.
中国农业科学院果树研究所, 辽宁, 兴城, 125100
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
中央级公益性科研院所基本科研业务专项基金
;
国家自然科学基金青年科学基金项目
;
中国农业科学院科技创新工程( CAAS-ASTIP)
|
文献收藏号
|
CSCD:6381010
|
参考文献 共
21
共2页
|
1.
Zhang J X. Gene cloning and functional analysis of GcAP1 complex beta subunit in Glomerella cingulata ( in Chinese).
中国农业科学,2017,50(8):1430-1439
|
CSCD被引
1
次
|
|
|
|
2.
Li B H. Research progress in apple diseases and problems in the disease management in China ( in Chinese).
植物保护,2013,39(5):46-54
|
CSCD被引
4
次
|
|
|
|
3.
Zhang J X. Agrobacterium tumefaciens-mediated transformation of Glomerella cingulata and screening pathogenicity-deficient mutants ( in Chinese).
基因组学与应用生物学,2014,33(6):1261-1267
|
CSCD被引
2
次
|
|
|
|
4.
Ren B. Etiology and infection process of Glomerella cingulata causing Glomerella leaf spot of apple ( in Chinese).
植物保护学报,2014,41(5):608-614
|
CSCD被引
1
次
|
|
|
|
5.
Gonzalez E. Population diversity within i-solates of Colletotrichum spp. causing Glomerella leaf spot and bitter rot of apples in three orchards in north Carolina.
Plant Disease,2004,88(12):1335-1340
|
CSCD被引
7
次
|
|
|
|
6.
Velho A C. New insights into the characterization of Colletotrichum species associated with apple diseases in southern Brazil and Uruguay.
Fungal Biol-Uk,2015,119(4):229-244
|
CSCD被引
7
次
|
|
|
|
7.
Wang W. Etiology of apple leaf spot caused by Colletotrichum spp. ( in Chinese).
菌物学报,2015,34(1):13-25
|
CSCD被引
2
次
|
|
|
|
8.
Wu J Y. Pathogenicity differentiation of pathogen causing Glomerella leaf spot of apple ( GLSA) and evaluation of resistance to GLSA in apple Germplasms ( in Chinese).
植物遗传资源学报,2017,18(2):210-216
|
CSCD被引
3
次
|
|
|
|
9.
Wu J Y. Construction of the fungus expression Vector of nptⅡgene and applying to the genetic transformation in Glomerella cingulata ( in Chinese).
基因组学与应用生物学,2015,34(10):2156-2160
|
CSCD被引
2
次
|
|
|
|
10.
He Y Q. An improved protocol for fungal DNA preparation.
Mycosystema,2000,19(3):434
|
CSCD被引
36
次
|
|
|
|
11.
Liu Y G. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences.
Biotechniques,2007,43(5):649-654
|
CSCD被引
155
次
|
|
|
|
12.
Gan P. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi.
The New phytologist,2013,197(4):1236-1249
|
CSCD被引
11
次
|
|
|
|
13.
Lee M H. Agrobacterium T-DNA-mediated integration and gene replacement in the brown rot pathogen Monilinia fructicola.
Current Genetics,2006,49(5):309-322
|
CSCD被引
7
次
|
|
|
|
14.
Zhou Z. ABC protein CgABCF2 is required for asexual and sexual development, appressorial formation and plant infection in Colletotrichum gloeosporioides.
Microbial pathogenesis,2017,110(9):85-92
|
CSCD被引
3
次
|
|
|
|
15.
Wu J. Identification of conidiogenesis-associated genes in Colletotrichum gloeosporioides by Agrobacterium tumefaciens-mediated transformation.
Current microbiology,2016,73(6):802-810
|
CSCD被引
5
次
|
|
|
|
16.
Feofilova E P. The fungal cell wall:modern concepts of its composition and biological function.
Microbiology,2010,79(6):723-720
|
CSCD被引
2
次
|
|
|
|
17.
Ram A F J. Identification of fungal cell wall mutants using susceptibility assays based on Calcofluor white and Congo red.
Nature Protocols,2006,1(5):2253-2256
|
CSCD被引
9
次
|
|
|
|
18.
de Jong J C. Glycerol generates turgor in rice blast.
Nature,1997,389(6648):244-245
|
CSCD被引
24
次
|
|
|
|
19.
Kubo Y. Dynamics of infection-related morphogenesis and pathogenesis in Colletotrichum orbiculare.
Journal of General Plant Pahtology,2013,79(4):233-242
|
CSCD被引
4
次
|
|
|
|
20.
Takano Y. Structural analysis of PKS1,a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium.
Molecular & general genetics,1995,249(2):162-167
|
CSCD被引
6
次
|
|
|
|
|